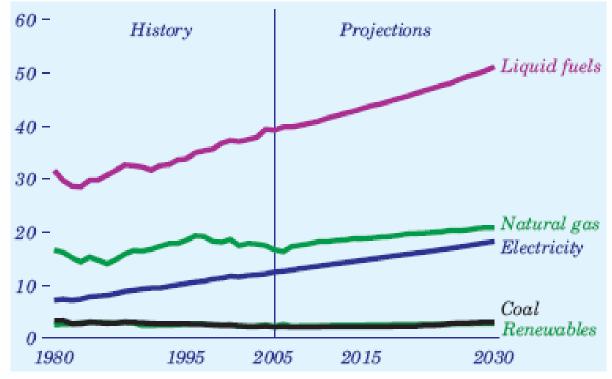
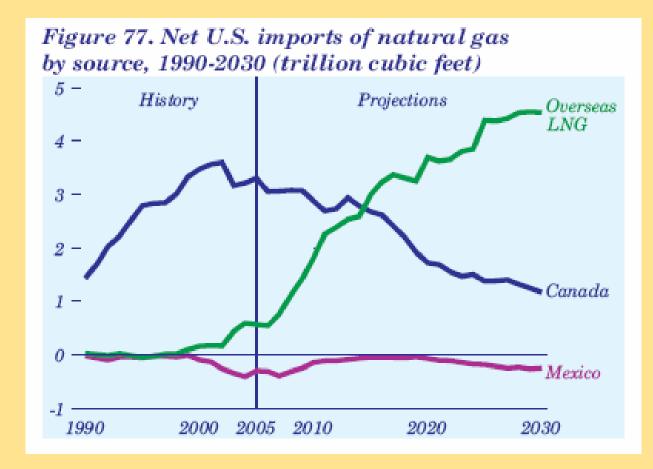
GEOTECHNICAL ENGINEERING CONSIDERATIONS FOR ENERGY DEVELOPMENT PROJECTS

HALEY& ALDRICH

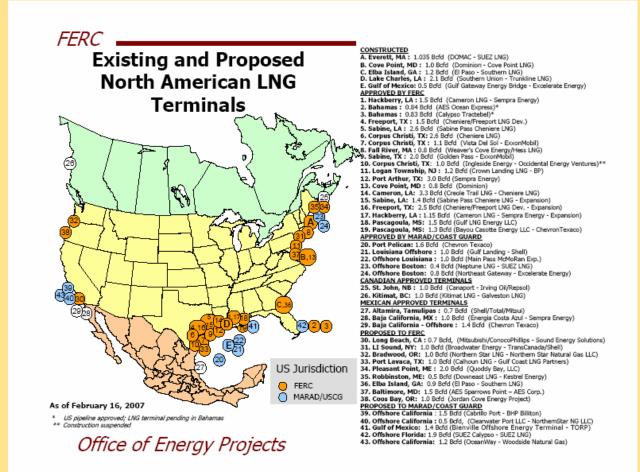

Introduction

- Future Energy Demand Projections
- Energy Facilities
 - Liquefied Natural Gas (LNG)
 - Electric Transmission Lines
 - Gas Pipelines
 - Geothermal Energy
- Brief Overview of Demand for Projects
- Geotechnical Design Aspects
- Case Histories

Energy Demand Projections


Figure 35. Delivered energy use by fuel, 1980-2030 (quadrillion Btu)

Courtesy of Energy Information Administration Annual Energy Outlook 2007


Energy Demand Projections

Courtesy of Energy Information Administration Annual Energy Outlook 2007

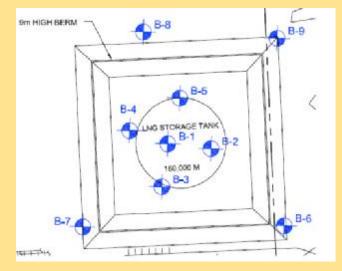
LNG Facilities - Introduction

LNG Facilities - Introduction

- LNG sites are located in waterfront environments
- Marine depositional environment challenging subsurface conditions
- Seismic risk evaluation
- Liquefaction susceptibility and lateral spreading

LNG Facilities - Introduction

- Pressurized storage tank
- Containment dike
- Waterfront structures
- Ancillary equipment


LNG Facilities – Tank Design

- Walls supported on ringwall foundation (typical load = 10 kips per l.f. of wall)
- Tank bottom supported on ground. (Pressure across tank bottom = 3,600 psf).
- Settlement Criteria
 - Dishing settlement criteria (6 in. from edge to center)
 - Differential settlement around ringwall (3/8 in. max over 30 ft. arc length.
 - Tilting settlement (<4 in. from side to side)

LNG Facilities – Tank Design

- Subsurface Investigations
 - Minimum of five borings at tanks (more where subsurface conditions are complex)
 - Large footprint results in deep zone of influence
 - Four to eight borings at containment dike
 - Install wells to determine groundwater level

LNG Facilities – Tank Design

- Foundation Design Analyses
 - Total Settlement
 - Differential Settlement
- Global Bearing Capacity
- Shallow foundations
- Consider ground improvement

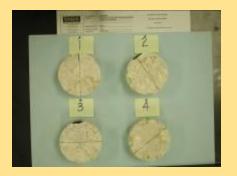
LNG Facilities – Containment Dike Design

- Sites often have limited footprint.
- Depending on location, materials suitable for dike construction may not be readily available.
- Steepened sideslopes (1.5H:1V)
- Soil-cement on flanks (2.5 m wide).
- Perform slope stability analysis to estimate shear strength needed for adequate safety factor.
- Estimate percent cement required with laboratory testing.

- § Unloading Platform
- **§** Mooring Dolphins
- **§** Breasting Dolphins

Photo Courtesy of Chicago Bridge & Iron Company

- Structures subjected to high lateral loads from:
 - Tanker loads
 - Wind and wave action (design for Category 5 hurricane)

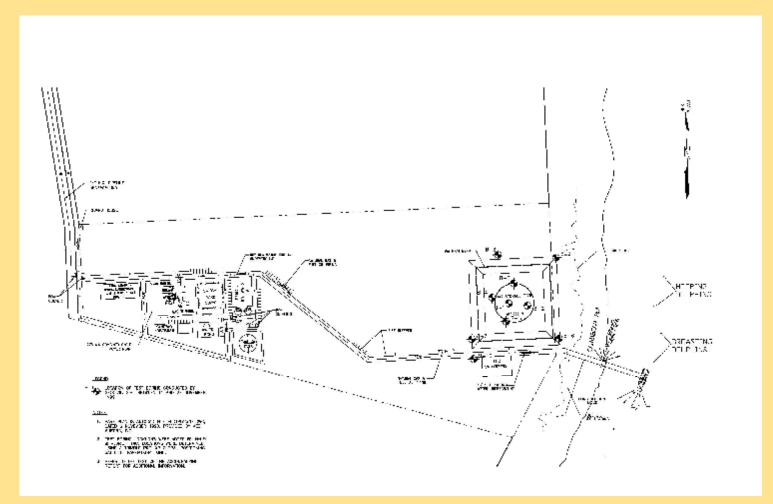

LNG Vessel Photo courtesy of CH-IV International http://www.ch-IV.com

- Features typically supported on driven piles or drilled piers depending on subsurface conditions
- Lateral loads on vertical piles result in high bending stresses
- Large diameter foundation elements to control lateral deflections
- Lateral loads commonly resisted by battered piles
- Uplift loads (100 to 550 kips per pile)
- Compression loads (160 to 480 kips per pile)
- Design to limit lateral deflections to 1 in. max.

- Engineering Analysis
 - Axial Capacity

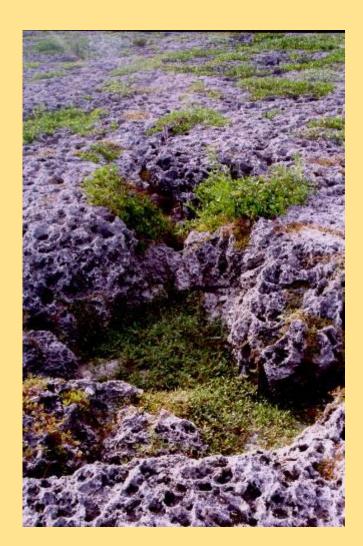
- **u** Estimate soil properties (friction angle, cohesion, and unit weight).
- Estimate rock properties including compressive strength.
- Use engineering properties to estimate allowable skin friction and end-bearing.
- Driven Piles Wave equation analysis to determine capacity, driving criteria, and to evaluate driving stresses.
- **u** Evaluate allowable uplift consider two mechanisms
 - Skin friction along foundation element
 - Weight of soil or rock engaged by skin friction.

- Engineering Analysis
 - Lateral Capacity
 - Estimate Young's Modulus values of soil or rock along pile or drilled pier.
 - Evaluate lateral load, bending stresses, and deflections of foundations using LPile or other techniques.
 - ^u Consider group action.



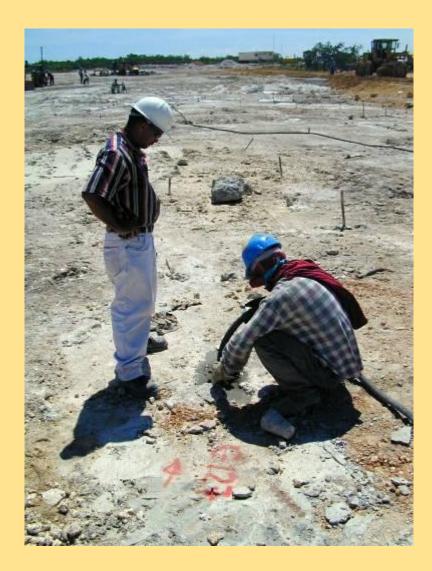
LNG Facilities – Shipping Channel

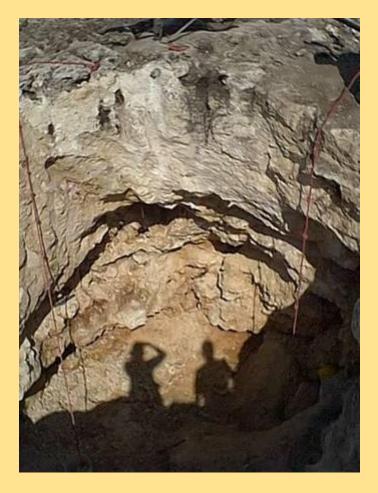
- 800-ft. wide shipping channel at least 45 ft. deep.
- Dredging often required.
- Slope stability of dredged channel
- Re-use of dredged materials during site development to avoid disposal.

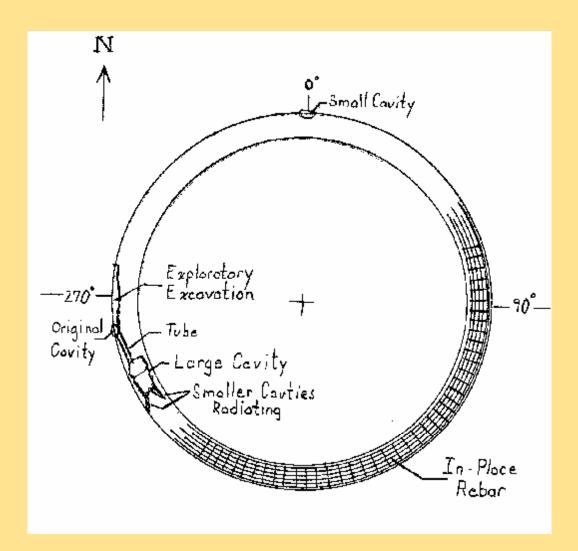


- Tank Area
 - Drilled 5 test borings and 83 test probes. (Probes intended to investigate for solution cavities)
 - Limestone Rock generally competent with the exception of two 1-m. dia. solution cavities
 - Footings on bedrock

- Plant Area
 - Drilled 7 test borings, and 59 test probes.
 - Limestone More significant voids encountered in bedrock. Precipitation leaching through vegetation created carbonic acid, which promoted solution cavities.
 - Also observed surface voids up to 10 m deep. Often filled with loose soil or rock.
 - Recommended pressure grouting to improve bedrock for support of spread footings.
 - Grout holes advanced on 3 to 4 m square primary pattern to depths ranging between 5 and 10 m depending on rock conditions and structure load.
 - Loose soil or rock in surface voids was removed and voids were filled with concrete.







Electric Transmission Lines -Introduction

- FERC providing incentives for development of transmission lines to create more competitive markets for electricity.
- Upgrade transmission systems with more efficient technologies to meet increased demand.
- Transmit electricity from regions with resources to areas of demand (e.g. wind energy from Plains States or coal from Wyoming).
- Several thousand miles of new transmission lines planned

Electric Transmission Lines -Introduction

Major Electric Transmission Spending Initiatives

Company	Region	Capital Investment
Allegheny Energy	Mid-Atlantic	\$850-million project 2007-2011
American Electric Power	Mid-Atlantic South	\$9 billion of identified projects
American Transmission Co.	Wisconsin	\$3.1 billion 2006-2015
ITC Holdings	Michigan	\$1.8 billion 2005-2012
Northeast Utilities	New England	\$2.4 billion 2006-2011
Pepco Holdings	Mid-Atlantic	\$565 million 2005-2009 \$1.24-billion project 2007-2014
Xcel Energy	Great Plains	\$1.5 billion-\$2.0 billion
PG&E Corp.	Northern & Central Calif.	\$1.8 billion 2006-2010
Edison International	Southern Calif.	\$2.5 billion 2006-2010
Sierra Pacific Resources	Nevada	\$1.3 billion 2007-2014
Second resident in the second	SO	URCE: EEI

Courtesy Engineering News Record

Electric Transmission Lines -Introduction

- Wide range in subsurface conditions due to changes in geology along alignment.
- Projects often routed through remote areas
- High lateral loads and moments.

Electric Transmission Lines – Foundation Design

- Subsurface Investigations
 - One boring at each tower, 20 to 60 ft. deep. Towers typically 300 to 400 ft. apart.
 - Projects often along alignments of existing transmission lines. Maintain clearance of drilling equipment.
 - Portable equipment needed in areas with challenging access.

Electric Transmission Lines

- Laboratory Testing
 - Unconfined Compressive Strength
 - Brazilian Tensile Test
 - Grain Size Analyses
 - Moisture Content
 - Atterberg Limits

Electric Transmission Lines – Foundation Design

- Lateral loads from wind action and cable (45 to 200 kips).
- Much of the lateral loads is applied near top of tower. High moments (2,800 to 13,000 k-ft.)
- Compression loads (65 to 200 kips)
- Towers typically supported on drilled piers efficiently resist lateral loads and moments.
- In locations with shallow bedrock, can consider spread footings with tie-down anchors.



Gas Pipelines - Introduction

- Wide range in subsurface conditions due to changes in geology along alignment.
- Often routed through remote areas; difficult access during explorations and construction.
- River crossings horizontal directional drilling.

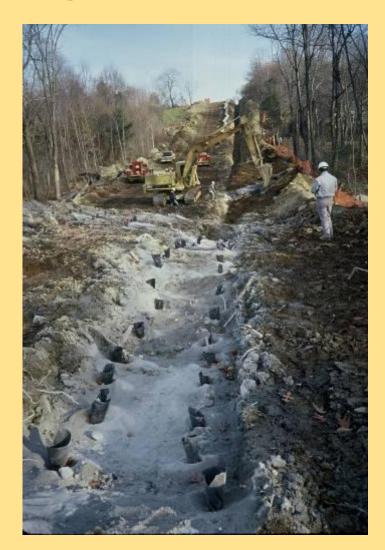
Gas Pipelines - Investigations

- Less intensive subsurface exploration program.
- Light loads low stress increases.

Gas Pipelines - Investigations

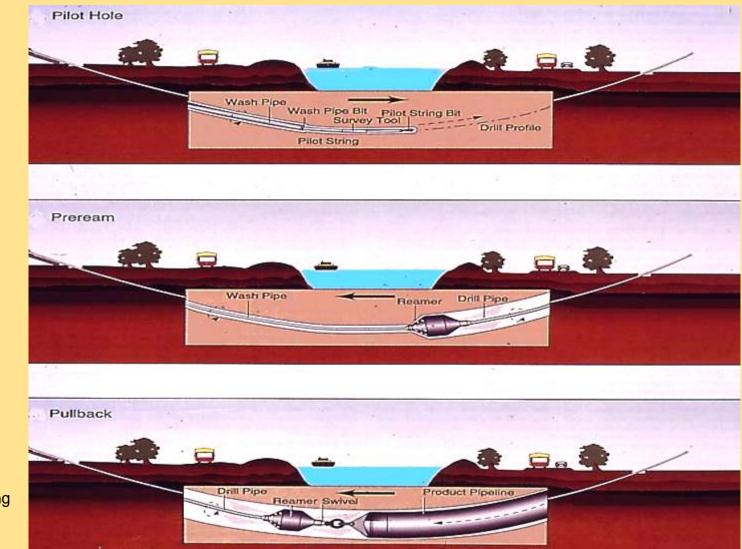
- Phase One
 - Assist with route selection.
 - Aerial photographic interpretation and review of available published geologic information.
 - Initial terrain analysis to assess surficial conditions and geologic conditions along potential routes.
- Phase Two
 - Geologic mapping along pipeline route.
 - Test borings on land and from barges at river crossings.
 - Laboratory testing on soil and rock samples.

Gas Pipelines – Design Issues


- Bedrock Excavation
 - Rippable Bedrock/Hoe-Ram
 - Controlled Blasting cost-effective bedrock removal
 - Vibrations at adjacent structures
 - Avoid fly rock
 - Impact on residential wells

Gas Pipelines – Design Issues

- Blast Round Design
 - Use adequate charge weight per volume of rock to break rock thoroughly.
 - Control charge weight detonated at one time to reduce ground vibrations.
 - Delay blasting 25 to 50 ms delays



Gas Pipelines - Horizontal Directional Drilling

- Steerable drilling process
- Drilling fluid stabilizes hole and removes cuttings
- Multiple steps:
 - Pilot hole
 - Backreaming
 - Pipe installation
- Diameters: 2 in. to 4 ft.
- Drive length: up to 5,000 ft.

Gas Pipelines – Horizontal Directional Drilling

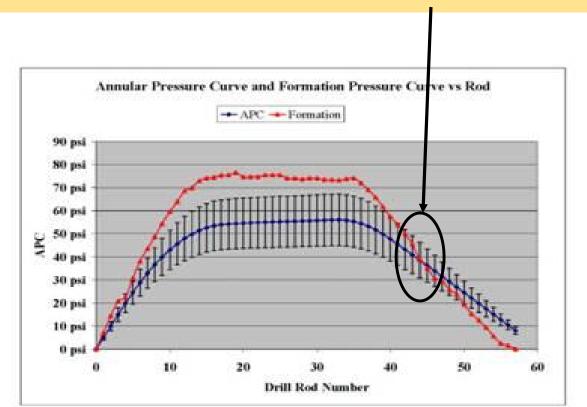
Courtesy Directional Crossing Contractors Association

Gas Pipelines – Horizontal Directional Drilling

- HDD Design Issues
 - Top of bedrock profile. Drilling in rock is 6 times more expensive than soil.
 - Rock mineralogy (drilling rate; bit wear)
 - Control drilling fluid pressures to prevent frac out.
 - Safe pulling load

Gas Pipelines – Horizontal Directional Drilling

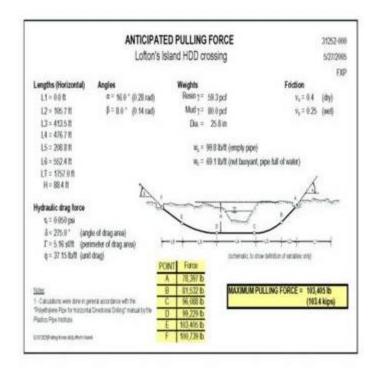
- HDD Design Investigations
 - Review local geologic references (surficial geology maps, bedrock maps, information on faults, etc.)
 - Develop field investigations based on results of initial geology review
 - Geophysical work
 - **u** River bottom profile
 - u Top of bedrock profile
 - Obstructions or objects that may provide path for drilling fluid loss
 - Test borings


Gas Pipelines – Horizontal Directional Drilling

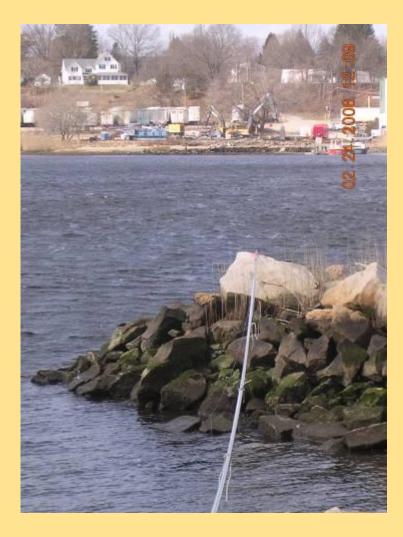
- Field and Laboratory Testing
 - Packer Testing in bedrock to evaluate drill fluid loss into formation
 - Thin sections for petrographic analyses to assess rock abrasion and hardness (drilling difficulty)
 - Rock strength testing (unconfined compressive strength, Cershar Hardness)

Gas Pipelines – Horizontal Directional Drilling

Problem Zone



Gas Pipelines – Horizontal Directional Drilling


Factors for Safe Pull Load

- Geometry •
- Length Ground friction
- Drill fluid drag
 Weight up/down
 Pull rate

Gas Pipelines – Horizontal Directional Drilling

Gas Pipelines - Horizontal Directional Drilling

Gas Pipelines - Horizontal Directional Drilling

Gas Pipelines - Horizontal Directional Drilling

Gas Pipelines – Horizontal Directional Drilling

Gas Pipelines – Horizontal Directional Drilling

- Renewable energy source
- Sustainability/Carbon Footprint Reduction
- Gaining popularity with Leadership in Energy and Environmental Design (LEED) Green Building Rating SystemTM
- University clients
- Heat pump using ground at constant 55 degree temperature to heat water in cold months and cool water in warm months.

- Two types of vertical systems
 - Vertical Closed Loop 85% of systems
 - **u** Common choice where bedrock is deep
 - Standing Column (Open) 15% of systems
 - **u** 10 to 20 times more efficient than closed loop
 - u 8 to 10-in. dia. rock well
 - u Standing column also an option in permeable overburden deposits

- Subsurface Investigations
 - Test borings to determine depth to bedrock and type of bedrock. Determines whether use closed or open system
 - Open systems pilot test with one well to evaluate fractured zones in bedrock.
- Design Issues
 - Drawdown
 - **u** Potentially attract contaminated groundwater.
 - **u** Impact on nearby wells.
 - Potentially cause consolidation of deep clays if lower groundwater. Can use recharge wells to reduce impact.
 - Water Quality Biofouling, salinity, mineral deposits.

- Intermediate depth closed loop installed in deep foundations for buildings.
- Suitable foundation elements include slurry wall used for deep basements, drilled piers, concretefilled pipe piles.
- Low cost
- Used frequently in Europe rarely used in United States.

Geothermal Energy Systems (Within Foundation)

Construction Phase Services

- Involvement of design engineer is critical to project success.
- Design engineer has best understanding of design assumptions.
- Confirm work is in conformance with contract documents.
 - Foundation installation.
 - Tie-down anchor installation at tower structures.
 - Review contractor blast round designs, perform vibration monitoring.
 - Monitor earthwork and compaction of fill.

Future Trends

- Increased demand for renewable energy projects
 - Wind energy
 - Biomass
 - Solar energy
 - Geothermal energy
 - Biofuels

Closing Remarks

- Energy development market likely to remain strong for the foreseeable future due to continued increase in demand.
- Geotechnical engineers play a vital role in the success of energy development projects.
- "Easy" sites are gone. Available land often overlooked previously due to poor subsurface conditions.
- Challenge to geotechnical engineers is to provide cost-effective solutions to make projects viable.

QUESTIONS?

