Geologic History and Resulting Unstable Slopes in the Cuyahoga River Valley

BBC\&M ENGINEERING, INC. 6190 Enterprise Court Dublin, OH 43016

Donald C. Wotring, Ph.D.
Stephen C. Pasternack, Ph.D., P.E.

Cleveland Downtown Vicinity

Geologic History - Cuyahoga River Valley

FIG.2. EAST-WEST SECTION THROUGH VALLEY

Geologic History - Glacial Deposits

Glacial Lake Erie History

1. Eagle Avenue - Geological Cross Section

2. West $25^{\text {th }}$ Street

3. I-90 Bridge

BBCM

3. I-90 Bridge - Cross Section

3. I-90 Bridge - Inclinometer Movement

Centerline of I-90 - 35' W from West End Pier South Leg

3. I-90 Bridge - Inclinometer Movement

3. I-90 Bridge - Field Reconnaissance

Plate 46: Warehouse (cold storage) west of I-90 on University Avenue, point 9. Photo is looking at the east wall of the warehouse

Plate 45: Crack mapping for the warehouse (cold storage) west of I-90 on University Avenue, point 9 . The location and extent of the cracking is aporoximate onlv.

3. I-90 Bridge - Field Reconnaissance

Plate 23: 1201 University Avemse (Sokolowski's Uuiversiy Ime), point 4. Photo is taken from inside looking at the north-west coner of the building. This photo illustates setclement that occurred approximately 5 years ago. The maximum vertical displacement is at least 9 -inches

3. I-90 Bridge - Behavior in Zone of Influence

3. I-90 Bridge - Results Summary

Conclusions from Geology

1) Deep river incision \rightarrow steep bluffs;
2) Pre-sheared planes and creep;
3) Pre-sheared planes \rightarrow residual strength conditions;
4) Fluvial deposits aggraded, which buried presheared planes; and
5) Trapped natural gas pockets \rightarrow locally high soil pore pressure \rightarrow reduces shear strength \rightarrow increases creep rate

Approach to Geotechnical Investigations

1) Field reconnaissance looking for signs of instability and creep movement;
2) Ideally, perform CPT testing prior to SPT to locate pre-sheared planes and profile pore pressure;
3) Perform continuous SPT sampling in the vicinity of the anticipated pre-sheared planes and look for slickensides;
4) Obtain 'undisturbed' samples (piston sampler) from pre-sheared plane(s);
5) Install inclinometers and piezometers based on CPT and SPT boring results;
6) Perform field monitoring for sufficient time necessary depending on the field conditions.
7) Test soil for fully softened (CUTXC, CUDSS) and residual strength (TRS); and,
8) Model slope stability with soil shear strength and at a minimum take into consideration mode of shear along the modeled failure plane.

Slope Model for Creeping Slope in Clay

Drained Residual Strength

CK ${ }_{0}$ UDSS
 or

Torsional Ring Shear

THANK YOU! - Questions?

BBCM
Cuyahoga National Forest

