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Climate Change Impacts




Global Sea-Level Rise and Temperature Rise

Past and Projected Changes in Global Sea Level Rise
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Images from EPA: https://www.epa.gov/climate-change-science/future-climate-change
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Projections for the U.S: Sea-Level & Temperature

Higher Emissions Scenario - Projected Temperature Change (°F)
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Images from EPA: https://www.epa.gov/climate-change-science/future-climate-change
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Projections for the U.S: Precipitation
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Projections for the Arctic and Antarctica
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Summary Climate Change Projections & Impacts

* Raise in sea-levels

* Increase in average temperatures

* Change in patterns and amounts of precipitation

* Decline in snow-cover, permafrost and sea-ice

* Acidification of the oceans

* Increase frequency, intensity & duration of extreme
events

* Change eco-system characteristics

* Water resources

* Infrastructure

* Food supply

* Ecosystems

* Human Health & Well Being

From EPA: https://www.epa.gov/climate-change-science/future-climate-change
Image from :https://pixabay.com/en/earth-blue-planet-globe-planet-11009/
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Research Challenges

* Improving global scenarios, predicting local scenarios
* Developing adaptation strategies
* Achieving emissions reductions

* Clean energy technologies

* Energy efficiency

* CO,, Storage options

* Measuring progress
* How to communicate?

http://www.archdaily.com/493406/the-big-u-big-s-new-york-city-vision-for-rebuild-by-design
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Geotechnical & Geo-environmental Challenges

* Rising and Falling Groundwater Levels
* Under-ground structures & services
* Foundations, retaining walls, embankments
 Groundwater contamination, remediation & containment
schemes
* Adaptation strategies for sea-level rise
* Raising structures
* Protecting tunnels
* Tide and storm surge barriers
* Achieving emissions reductions
 Geothermal energy
* Wind & Hydro-power
* Natural gas
* CO,, Sequestration & storage

11



Adaptation Case Study

12



New York City
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Increased Flooding and Urban Heat Island Impacts

Photo from: http://inhabitat.com/nyc/torrential-rains-leave-new-york-and-new-jersey-drenched-with-rail-and-road-closures/
Image courtesy of Gaffin, Columbia University
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Vegetation as an Adaptation Strategy

Image from: http://ngm.nationalgeographic.com/2009/09/manhattan/miller-text




New York City’s Green Infrastructure Plan

Implemented to address the City’s storm-water management issues
~ 20 year implementation plan, at an
estimated cost of $2.4 billion

Primarily based on reducing volume
rain entering sewer system

NYC GREEN INFRASTRUCTURE PLAN

E ESTRATEG :.._-““ WATERWAYS

WEYC NYE — . .
i Co-benefits include climate resilience

http://www.nyc.gov/html/dep/html/stormwater/nyc_green_infrastructure_plan.shtml 16



Example Green Infrastructure Strategies

CREDIT: Columbia University Researchers




Green Roof Technology

Intensive Extensive

Thick “engineered soil” depths (100 to 200mm), heavy, Thin “engineered soil” depths (30 to 150 mm), light,
support diverse vegetation and fragile, often employ sedum vegetation
human traffic

CREDIT: Columbia University Researchers

http://www.museumofthecity.org/project/green-roofs-in-cities/
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Layers of an extensive green roof




Common extensive green roof types
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Columbia University Green Roof Network

(7) Full-scale green roofs. (3) Pilot-scale test boxes
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CU 118 Residence
Xeroflor 1- 2” Matt System
3,200 sf
CU 115 Environmental Stewardship
Xeroflor 1 - 2" Matt System
650 sf
ConEdison Learning Center
Modular 4” Tray System
10,000 sf
USPS Morgan General Mail Facility
Complete 4- 6" System
108,900 sf
Bronx Design & Construction Academy
Modular 4” Tray System
1,200 sf
Regis High School
Complete 4-6” System
20,000 sf
Ethical Cultural Fieldston School
Complete 4 - 6” System
5,100 sf 22

Columbia Green Roof Network — Runoff Quantity




Stormwater Volume Retention: W115, W118, ConEd, USPS

CREDIT: Columbia University Green Roof Consortium 23
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New York City Historic Rainfall Data
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Study Period versus Historic Period
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Stormwater Volume Reduction — Modeled Behavior
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Stormwater Volume Reduction — Averaged Behavior
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Retention Design Curves - ConEd
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Evapotranspiration — W118

Stormwater green street (“sGs 117) in
the Bronx NY & temperatures
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o
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CREDIT: Gaffin, Columbia University

CREDIT: Marasco et al., 2014
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ET Model for Sedum Green Roofs
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Summary Results to Date

Engineered Green Infrastructure can:

- Help mitigate impacts of increased precipitation (40%+
stormwater capture locally - can be improved)

- Reduce surface temperatures
- Sequester CO,
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CREDIT: McGillis, Columbia University
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Challenges

Scale of implementation needed
Public-private partnerships
New zoning & buy out policies

- Siting requirements
Geotechnical conditions
Local neighborhood conditions
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- Maintenance requirements g i - 600
Increased workforce o isBLALLLE Lt AL 509
Stewardship programs July 2011 - June 2012 (days)

Weir Runoff eeeeee W.B. Runoff

Low cost-monitoring technology

Precipitation

- Long-term performance

- Public/ Stakeholder acceptance .
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Smart Control — Geosyntec & Opti-RC
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New Growing Media — use of local waste materials

. &) 3 (a) drywall, (b)
S V&2 recycled
S Tz
- X ,*g c.oncrete, (c.)
S =l timber cuttings,
‘o%-’. A% !
= 75&:% g+ (d) glass, (e) roof
" O Tawr e .
,. = shingles, (f)
5 | 100% compost
: | control.

CREDIT: Tyler Carson
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Stakeholder Engagement

Low Priority

High Priority

e, ‘Sﬁ’t'i?;‘ |
LB ) e N VR

CREDIT: Robert Elliott
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Distributed/ Neighborhood Infrastructure
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Example systems for local resilience/ adaptation

CREDIT: Images obtained from SRN: Integrated Urban Infrastructure Solutions for Environmentally Sustainable, Healthy, and Livable Cities



Changes in Approach Move Away from Centralized Systems

Infrastructure systems with very, many components

- How to define performance, .

« Quantify performance, WESB‘GW 5
+ Monitor performance, *M:I]A]'ASJUIRAEE?‘E
- Maintain performance?

http://www.busitelce. com/data visualisation/30-word-cloud-of-big-data

 Infrastructure systems that interface with the public

« Public understandin
J 0000,
""' CREDIT: Clip Art
« Scale issues?

- Responsibility?
« Trade-offs between different infrastructure
investments?
-  Equity?

https://www.worldwildlife.org/pages/wwf-s-green-headquarters
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Geotechnical & Geo-environmental Examples

- Green infrastructure

- Geothermal systems, energy piles and energy walls
- Localized flood protection

- Rainwater storage

CREDIT: Olgun et al. MIT Underground Detention Systems CREDIT: J. Nitsch
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Needs in Future Practice, Research & Training

- Awareness of climate change predictions, models and
assumptions

« What do we need out of these models?

- Develop a better understanding of impacts of climate change on
geotechnical engineering structures and practice

- vulnerability/ hazard index?
- What is progress to reduce vulnerability?
- How is this measured?

- Learn how to integrate engineering, ecosystems and soual
strategies o —

- Engage Stakeholders

CREDIT: CLS/Cnes/Legos
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Thank-you

Sponsors

(& conEdison

A\ TECTA AMERICA

Rooting Redefined

%" National Science Foundation
“ WHERE DISCOVERIES BEGIN

o,
F I.-'I:

And very many collaborators and students!
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