SUNGHEE ESTELLE PARK

CURRICULUM VITAE

11/10/2023

Assistant Professor Weldon School of Biomedical Engineering Purdue University 206 S Martin Jischke Dr. MJIS 2096 West Lafayette, IN 47907

E-mail: <u>park1713@purdue.edu</u> Phone: 765-496-4896

https://engineering.purdue.edu/PARKLAB/

EDUCATION & TRAINING

2023 – 2023	University of Pennsylvania Postdoctoral Research Fellow
2017 – 2023	University of Pennsylvania Ph.D. in Bioengineering, CEMB Fellow (Advisor: Dr. Dan Dongeun Huh) Thesis project: Engineering stem cell-derived lung organoids on a chip for the study of human lung development Other projects: Intestinal organoids-on-a-chip, retina-on-a-chip
2015 – 2017	Korea University M.S. in Mechanical Engineering (Advisor: Dr. Seok Sid Chung) Thesis project: Three-dimensional in vitro modeling of the peripheral nervous system
2010 – 2015	Korea University

ACADEMIC APPOINTMENTS

1/2024 – present **Assistant Professor**

Weldon School of Biomedical Engineering, Purdue University

RESEARCH EXPERIENCE

2010 – 2017 Researcher, Biomedical Research Institute,

B.S. in Mechanical Engineering

Korea Institute of Science and Technology (PI: Dr. Inchan Youn)

- Project 1: Developed a mouse model of different stages of Parkinson's disease to study behavioral and electrophysiological characteristics.
- Project 2: Developed rodent models of acute and chronic stress to study differential heart rate variability and physiological responses associated with accumulated stress.

AWARDS AND HONORS

2023	SEED 2023 Best Presentation Award (2nd place)
2023	2023-2024 Graduate Women in Science (GWIS) National Fellowship Program (Honorable mention)

2023	2023 Graduate Awards Recipient (Outstanding research)
2022	2022 IEEE EMBS MNM Speaker Recognition
2022	2022 Collegiate Inventors Competition Finalist (Team leader)
2016	Best Paper Award, International Biomedical Engineering Conference
2015	Best Poster Presentation Award, <i>International Biomedical Engineering Conference</i>
2014	Student Paper Award, International Biomedical Engineering Conference
2014	Best Paper Award, Korean Society for Precision Engineering
2013	Best Paper Award, Korean Society for Precision Engineering

PUBLICATIONS

- 1. <u>S.E. Park</u>, S. Kang, J. Paek, A. Georgescu, J. Chang, A.Y. Yi, B.J. Walkins, T. Karakasheva, K.E. Hamilton, D.D. Huh* (2022) "Geometric engineering of organoid culture for enhanced organogenesis in a dish," *Nature Methods* https://doi.org/10.1038/s41592-022-01643-8.
- 2. <u>S.E. Park</u>, S. Kang, R. Truitt, W. Yang, D. Stambolian, D.D. Huh* (2023) "Microengineering patient-derived induced pluripotent stem cells to model blood-retina barrier tissue dynamics and pathological phenotypes in age-related macular degeneration," *submitted*.
- 3. S. Kang, <u>S.E. Park</u>, D.D. Huh* (2021) "Organ-on-a-chip technology for nanoparticle research," *Nano Convergence* 8, 20.
- 4. <u>S.E. Park</u>, J. Ahn, H. Jeong, I. Youn, D.D. Huh*, S. Chung* (2021) "A three-dimensional in vitro model of the peripheral nervous system," *NPG Asia Materials* 13, 1-11.
- 5. **S.E. Park**, A. Georgescu, D.D. Huh* (2019) "Organoids-on-a-chip," **Science** 364, 960-965.
- 6. J. Paek[†], <u>S.E. Park</u>[†], Q. Lu, K.T. Park, M. Cho, J.M. Oh, K.W. Kwon, Y.S. Yi, J.W. Song, H.I. Edelstein, J. Ishibashi, W. Yang, J.W. Myerson, R.Y. Kiseleva, P. Aprelev, E.D. Hood, D. Stambolian, P. Seale, V.R. Muzykantov, D.D. Huh* (2019) "Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues," *ACS Nano* 13, 7627-7643 (†co-first authors).
- 7. <u>S.E. Park</u>[†], A. Georgescu[†], J.M. Oh, K.W. Kwon, D.D. Huh* (2019) "Polydopamine-based interfacial engineering of extracellular matrix hydrogels for construction and long-term maintenance of living three-dimensional tissues," *ACS Applied Materials & Interfaces* 11, 23919-23925.
- 8. <u>S.E. Park</u> and T.P. Schaer. Pre-Clinical Animal Models. Academic Entrepreneurship for Medical and Health Scientists, Gooneratne, N., McGarrigle, R., and Winston, F (eds), Version 1.0, October 1, 2019 (in press), URL: https://repository.upenn.edu/ace/
- 9. S. Paik, S. Erdogan, Z. Phillips, Y. Kim, K. Song, <u>S.E. Park</u>, Y. Choi, I. Youn, B. Kim* (2019) "Hemodynamic correlation imaging of the mouse brain for application in unilateral neurodegenerative diseases," *Biomedical Optics Express* 10, 1736-1749.
- 10. K. Song, <u>S.E. Park</u>, D. Hwang, I. Youn* (2018) "Compact neural interface using a single multichannel cuff electrode for a functional neuromuscular stimulation system," *Annals of Biomedical Engineering* 1-13.
- 11. K. Song, <u>S.E. Park</u>, S. Lee, H. Kim, S.H. Lee, I. Youn* (2018) "Compact optical nerve cuff electrode for simultaneous neural activity monitoring and optogenetic stimulation of peripheral nerves," *Scientific Reports* 8, 1-11.

- 12. D. Park, M. Lee, <u>S.E. Park</u>, J. Seong, I. Youn* (2018) "Determination of optimal heart rate variability features based on SVM-recursive feature elimination for cumulative stress monitoring using ECG sensor," *Sensors* 18, 2387.
- 13. <u>S.E. Park</u>, K. Song, H. Kim, S. Chung, I. Youn* (2018) "Graded 6-OHDA-induced dopamine depletion in the nigrostriatal pathway evokes progressive pathological neuronal activities in the subthalamic nucleus of a hemi-parkinsonian mouse," *Behavioural Brain Research* 344, 42-47.
- 14. K. Song, J. Chu, <u>S.E. Park</u>, D. Hwang, I. Youn* (2017) "Ankle-angle estimation from blind source separated afferent activity in the sciatic nerve for closed-loop functional neuromuscular stimulation system," *IEEE Transactions on Biomedical Engineering* 64, 834-843.
- 15. <u>S.E. Park</u>[†], D. Park[†], K. Song, J. Seong, S. Chung, I. Youn* (2017) "Differential heart rate variability and physiological responses associated with accumulated short- and long-term stress in rodents," *Physiology & Behavior* 171, 21-31.
- 16. <u>S.E. Park</u>[†], K. Song[†], J.F. Suh, D. Hwang, I. Youn* (2015) "A time-course study of behavioral and electrophysiological characteristics in a mouse model of different stages of Parkinson's disease using 6-hydroxydopamine," *Behavioural Brain Research* 284, 153-157.
- 17. S. Han, J. Chu, K. Song, <u>S.E. Park</u>, J. Choi, J. Park, K. Choi, I. Youn* (2012) "Alternative mechanical evaluation method for ceramic hip joint implants utilizing finite element analysis under in vivo-like conditions," *Journal of Biomechanical Science and Engineering* 7, 336-348.
- 18. S. Han, J. Chu, K. Song, <u>S.E. Park</u>, J. Choi, J. Kim, J.F. Suh, K. Choi, I. Youn* (2012) "Prediction of stress distribution in the ceramic femoral head after total hip replacement," *Journal of the Korean Society of Precision Engineering* 29, 680-685.
- 19. S. Han, J. Chu, <u>S.E. Park</u>, J. Kim, H. Jun, K. Choi, I. Youn* (2011) "Finite element analysis of mechanical stability of ceramic acetabular components and evaluation of ROM in articulating hip joints," *Journal of Biomechanical Science and Engineering* 6, 173-182.

PATENTS

- 1. D. Huh, <u>S.E. Park</u>, W. Yang, D. Stambolian, "Microengineered models of the human eye and methods of use," **2020**, US 17/074,074
- 2. D. Huh, **S.E. Park**, "Geometric engineering of organoid culture for enhanced organogenesis," **2020**
- 3. D. Huh, **S.E. Park**, "Artificial human blood-retina barrier model and methods of preparation," **2020**

GRANTS AND FELLOWSHIPS

2023	Scientists and Engineers Early Career Development (SEED) workshop and UKC Travel Grant
2019	Sarla P. Kothary Memorial Travel Grant, Association for Research in Vision and Ophthalmology (ARVO)
2017 – 2022	Kwanjeong Educational Foundation (KEF) Scholarship

CONFERENCE ACTIVITY/PARTICIPATION

- 1. **Geometric engineering of organoid culture for enhanced organogenesis in a dish**, IEEE EMBS Micro and Nanotechnology in Medicine Conference, Disney Aulani Resort, Kapolei, HI, USA, December 5-9, 2022 (*Talk*)
- 2. Microengineered model of the human blood-retina barrier for the study of age-related macular degeneration, IEEE EMBS Micro and Nanotechnology in Medicine Conference, Disney Aulani Resort, Kapolei, HI, USA, December 5-9, 2022 (*Poster presentation*)
- 3. **Geometric engineering of organoid culture for enhanced organogenesis in a dish**, Penn Institute for Regenerative Medicine (IRM) Retreat, Philadelphia, PA, USA, April 27, 2022 (*Poster presentation*)
- 4. **Geometric engineering of organoid culture for enhanced organogenesis in a dish**, Keystone Symposia on molecular and cellular biology, Keystone Resort, Keystone, CO, USA, April 3-6, 2022 (*Talk*)
- 5. **Geometric engineering of organoid culture for enhanced organogenesis in a dish**, Keystone Symposia on molecular and cellular biology, Organoids as Tools for Fundamental Discovery and Translation, Keystone Resort, Keystone, CO, USA, April 3-6, 2022 (*Poster presentation*)
- 6. **Microengineered model of the human blood-retina barrier for the study of age-related macular degeneration**, Keystone Symposia on molecular and cellular biology, Engineering Multi-Cellular Living Systems, Keystone Resort, Keystone, CO, USA, April 3-6, 2022 (*Poster presentation*)
- 7. Microengineered model of the RPE-choroid complex for the study of age-related macular degeneration, Biomedical Engineering Society (BMES) Annual Meeting, Philadelphia, PA, USA, October 16-19, 2019 (*Poster presentation*)
- 8. A microphysiological engineering strategy for the production of perfusable and vascularized human microtissues, Biomedical Engineering Society (BMES) Annual Meeting, Philadelphia, PA, USA, October 16-19, 2019 (*Poster presentation*)
- 9. Inducible pluripotent stem cell (iPSC)-derived in vitro model for the study of cigarette smoking-induced complement activation in the human retinal pigment epithelium, Biomedical Engineering Society (BMES) Annual Meeting, Philadelphia, PA, USA, October 16-19, 2019 (*Poster presentation*)
- 10. Microengineered model of the RPE-choroid complex for the study of age-related macular degeneration, The Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting, Vancouver, Canada, April 28-May 2, 2019 (*Oral presentation*)
- 11. Analysis of heart rate variability and physiological parameters for stress/recovery monitoring, International Biomedical Engineering Conference, 2016
- 12. Analysis of heart rate variability and serum corticosterone level in an animal model of short- and long-term stress, The Korean Society of Medical & Biological Engineering, 2016
- 13. Closed-loop control of functional neuromuscular stimulation using cuff electrode for sit-to-stand maneuver in spinal cord injury animal model, International Biomedical Engineering Conference, 2015
- 14. Implantable functional neuromuscular stimulation system for ankle angle control, Asian-Pacific Conference on Biomechanics, 2015

- 15. Characteristics of the neuronal firing patterns in the subthalamic nucleus with graded dopaminergic cell loss in the nigrostriatal pathway, IEEE Engineering in Medicine and Biology Conference, 2015 (*Oral presentation*)
- 16. An implantable wireless optogenetic stimulation system for peripheral nerve control, IEEE Engineering in Medicine and Biology Conference, 2015
- 17. Optical stimulation parameters in the mouse medial forebrain bundle for operant conditioning reinforcement, International Biomedical Engineering Conference, 2014
- 18. Electrophysiological analysis of Parkinson's disease during optical deep brain stimulation in moue model, International Biomedical Engineering Conference, 2014
- 19. Closed-loop ankle angle control using nerve cuff electrode with functional electrical stimulation in rabbit, International Biomedical Engineering Conference, 2014
- 20. Control of dopaminergic neurons in mice medial forebrain bundle using optogenetic technology, Korean Society of Precision Engineering, 2014
- 21. Directional cues and rewards for behavior control using optogenetic stimulation in mice, Korean Society of Precision Engineering, 2014
- 22. Optogenetic stimulation in subthalamic nucleus influences motor cortex of Parkinsonian mice, Asian Pacific Conference on Biomechanics, 2013
- 23. Electrophysiological characteristic of optogenetic stimulation in Parkinsonian mice, Asian Pacific Conference on Biomechanics, 2013
- 24. Connectivity between subthalamic nucleus and motor cortex during optical deep brain stimulation in Parkinsonian mice, Korean Society of Precision Engineering, 2013
- 25. Effect of the optical deep brain stimulation in Parkinsonian mouse model, Korean Society of Precision Engineering, 2013
- 26. Prediction of stress distribution in ceramic ball head after total hip replacement using finite element analysis, The Korean Society of Medical & Biological Engineering, 2011
- 27. **Three-dimensional lip image acquisition system using stereo camera**, The Korean Society of Medical & Biological Engineering, 2011
- 28. Prediction of stress distribution in the ceramic liner under changed loads using finite element analysis, Korean Society for Precision Engineering, 2011
- 29. Biomechanical evaluation of custom made acetabular cup using 3D finite element method, Korean Society for Precision Engineering, 2011
- 30. **The three-dimensional lip shape tracking system using stereo camera**, Korean Society for Precision Engineering, 2011

TEACHING EXPERIENCES

BE551: Biomicrofluidics (Fall, 2021) BE551: Biomicrofluidics (Summer, 2020) BE551: Biomicrofluidics (Fall, 2019)

MENTORING EXPERIENCES

Aditya Rao, University of Pennsylvania (2022) Shawn Kang, University of Pennsylvania (2019-2022) Dennis Jeon, Chadwick International (2019) Parth Mody, Choate Rosemary Hall (2018)