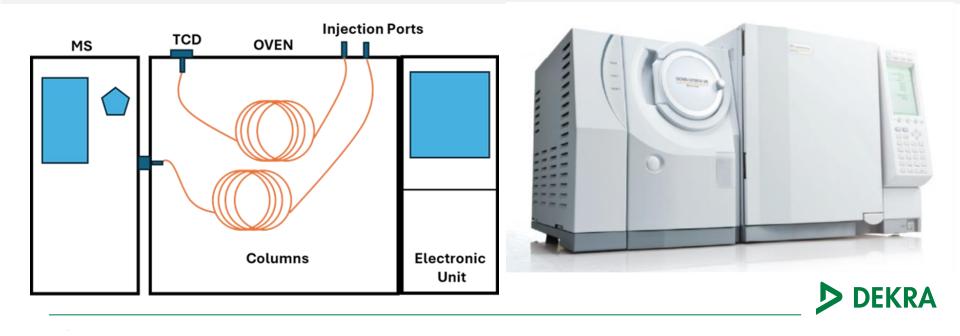
P2SAC SPRING 2025 CONFERENCE Purdue University

The Use of Gas Chromatography – Mass Spectrometry in Process Safety

Jiliang He

DEKRA Process Safety, 113 Campus Drive, Princeton, New Jersey 08540

Contents



- General Use of GC-MS in Process Safety
- Battery Vent Gas (UL 9540A)
- Transportation Classification (UN Test U.1)
- Ignitable Liquide Residues (ASTM E1618)
- Refrigerant Blend Verification (ASHRAE 34)
- Dangerous When Wet (UN Test N.5)
- Combined Use with Calorimeters (ARC, VSP2)
- Conclusions

Principles of GC-MS

Separate, identify, and quantify chemical compositions in volatile or semi-volatile mixtures.

- Liquid and gas compounds can be analyzed by direct injection into GC.
- Solid samples can be evaluated via thermal desorption/solvent extraction techniques.

General Use of GC-MS in Process Safety – Overview

1. Leak Detection and Monitoring

• to detect gases, e.g., CH₄, NH₃, H₂S, VOCs, etc.

2. Process Monitoring and Control

to continuously or periodically analyze gas stream or reaction mixture.

3. Contaminant Analysis and Monitoring

• to ensure raw materials, intermediate products, and final goods within safety thresholds.

4. Emissions Monitoring and Environmental Compliance

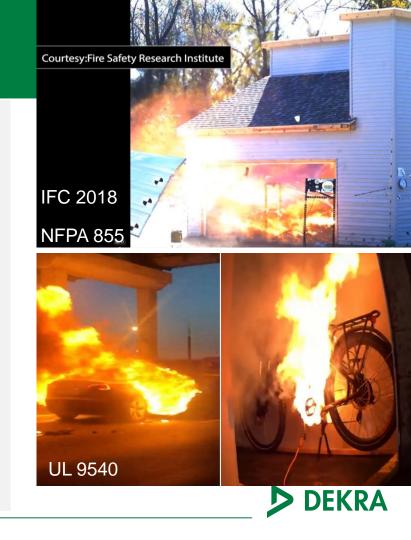
to track VOCs, greenhouse gases, and other pollutants within regulatory standards.

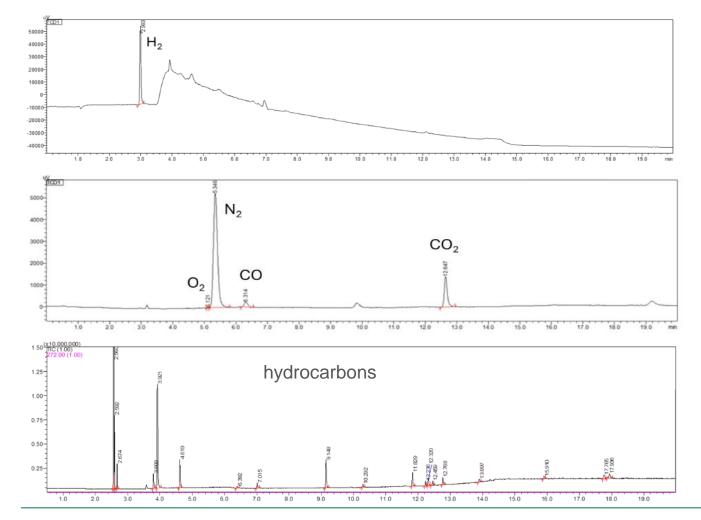
Case 1: Gas Quantification for Lithium-Ion Battery Thermal Runaway

UL 9540A Test Method for evaluating thermal runaway fire propagation in battery energy storage systems.

→ Battery thermal runaway

→ Gas generation/composition

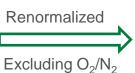

Flammability characteristics:


lower flammable limit (LFL)

maximum explosion pressure (P_{max})

burning velocity (BV)

Jiliang He, *et al.* Assessing the Risks of Thermal Runaway and Fire Propagation in Battery Energy Storage Systems Using UL 9540A Methodology, *21*st *Global Congress on Process Safety*, Dallas, TX, April 6-10, 2025.



Example 1.

Assay of battery vent gas by GC-TCD and GC-MS.

Gas	Measured mole %		
H ₂	9.69		
02	0.21		
N_2	79.59		
СО	0.98		
CO ₂	3.12		
CH₄ (Methane)	1.438		
C ₂ H ₆ (Ethane)	0.215		
C ₂ H ₄ (Ethylene)	0.946		
C ₃ H ₈ (Propane)	0.079		
C₃H ₆ (Propylene)	0.825		
C ₃ H ₄ (Propadiene)	0.057		
C4' *	0.342		
C ₅ H ₁₂ (Isopentane)	0.001		
n-C ₅ H ₁₂ (Pentane)	0.081		
C ₆ H ₁₄ (Hexane)	0.005		
*Individual C4 Compounds			
Isobutane	0.009		
n-Butane	0.032		
trans-2-Butene	0.118		
1-Butene	0.015		
Isobutene	0.118		
cis-Butene	0.015		
1,3-Butadiene	0.036		
SUM	97.58		

& unidentified

	Gas	Measured mole%		
	H ₂	54.53		
	СО	5.512		
	CO ₂	17.533		
	CH ₄ (Methane)	8.091		
	C ₂ H ₆ (Ethane)	1.208		
	C ₂ H ₄ (Ethylene)	5.326		
	C ₃ H ₈ (Propane)	0.445		
	C ₃ H ₆ (Propylene)	4.642		
	C ₃ H ₄ (Propadiene)	0.319		
	C4' *	1.927		
	C ₅ H ₁₂ (Isopentane)	0.006		
	n-C ₅ H ₁₂ (Pentane)	0.457		
	C ₆ H ₁₄ (Hexane)	0.028		
	*Individual C4 Compounds			
	Isobutane	0.051		
	n-Butane	0.180		
	trans-2-Butene	0.663		
	1-Butene	0.082		
	Isobutene	0.663		
	cis-Butene	0.082		
	1,3-Butadiene	0.205		
	SUM	100.00		

The composition is used to replicate a gas mixture for flammability tests e.g. LFL, P_{max} , BV.

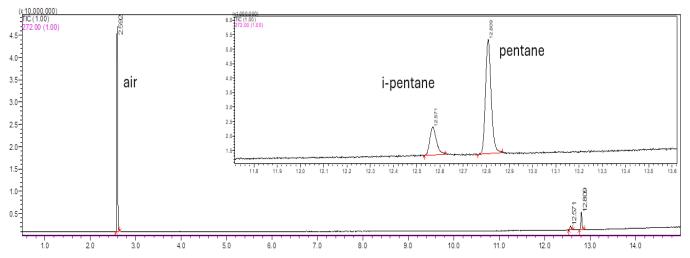
Flammable gas evolution from polymeric products leading to fire. (video)

Case 2: UN Test U.1, Substances Liable to Evolve Flammable Vapours

"Expandable polymeric beads or Plastics moulding compounds, evolving flammable vapours" for declassification of UN2211 or UN3314

Test procedure

The substance is placed in 3 x 50 ml serum bottles at 50° C for 14 days.


The headspace is analyzed by GC-MS and GC-TCD for flammable gases.

Test criteria and method of assessing results

Substances need not to be classified as Polymeric beads, expandable (UN2211) if <u>the concentration of flammable vapors is less than or equal to 20% of the Lower Explosive Limit (LEL)</u> of the flammable vapors in all of the three-repetition tests.

Headspace Gas from a Expandable Polymeric Bead after 14 days at 50°C (Test Example)

Example 2: Test U.1 gas assay by GC-MS

An incident (2019) involving expandable polymeric bead caused significant damage to a container ship. https://wwz.cedre.fr/en/Resources/Spills/Spills/MSC-Zoe

(Test Example)

Composition	Measured Mole%			Lower Explosive	
Composition	Bottle 1	Bottle 2	Bottle 3	Average	Limit (['] %)*
Air	99.77	99.61	99.74	99.71	n/a
Isopentane	0.05	0.09	0.05	0.06	1.4
Pentane	0.18	0.30	0.21	0.23	1.5
Composite					1.48**

^{*} OSHA Chemical Database: https://www.osha.gov/chemicaldata

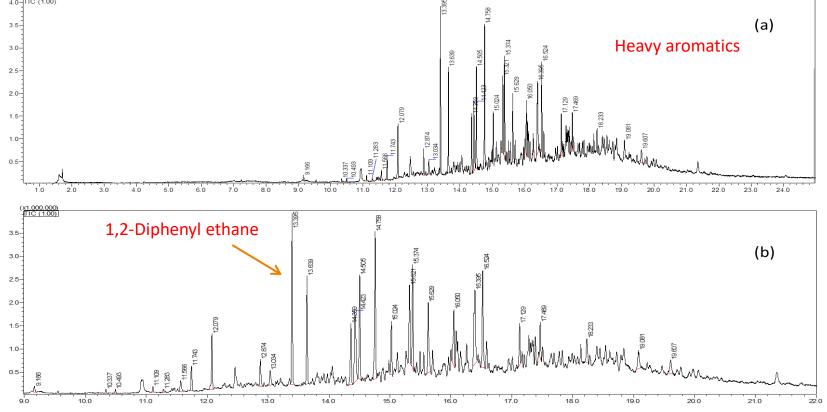
The concentration of the flammable component is 19.6% of the composite LEL. Sample is not classified as UN2211 substance.

^{**}Composite LEL = $\sum (x_i/L_i)^{-1}$ where x_i is the fraction of flammable component i and L_i is the lower explosive limit of flammable component.

Case 3: ASTM E1618, Ignitable Liquid Residues in Extracts from Fire Debris

Classification of Ignitable Liquid Residues

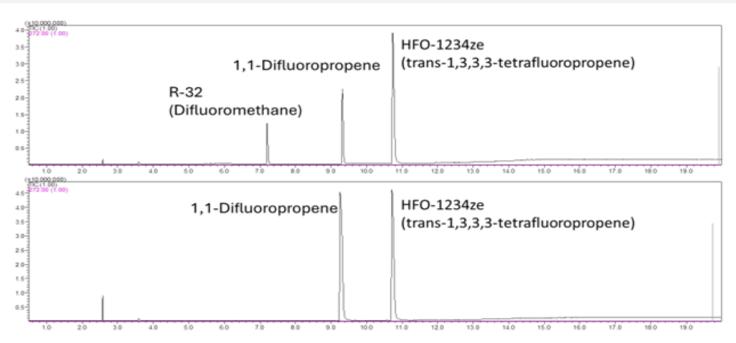
- 1) aromatic products (e.g., xylenes and some lamp oils)
- 2) gasoline
- 3) petroleum distillates (e.g., kerosene and diesel fuel)
- 4) isoparaffinic products (e.g., some paint thinners and mineral spirits)
- 5) naphthenic-paraffinic products (e.g., cyclohexane-based solvents/products)
- 6) normal alkane products (e.g., pentane and some toners)
- 7) oxygenated solvents (e.g., alcohols and some fuel additives)
- 8) miscellaneous, if a sample does not meet the criteria for any of the seven categories.



A Deflagration Incident Investigation

A maintenance team was removing a rusty valve from a fuel gas line. During the process of cutting off bolts, a fire ignited around the cutting area, followed by a minor detonation that expelled black soot from the line. To determine whether ignitable liquid residues contributed to the fire, we analyzed the soot sample (collected in a rag shown in the bottle) — using the ASTM E1618 method.

Example 3: GC-MS Total Ion Chromatogram for the Extract of Residue from Fuel Gas Piping. (a) General View (top), (b) Zoom View (bottom)


1,2-Diphenyl ethane was identified as one of major ignitable liquid residue components.

Case 4: ASHRAE 34, Refrigerant Blends and Safety Classification

Composition Verification

Composition Confirmation after Fractionation Test

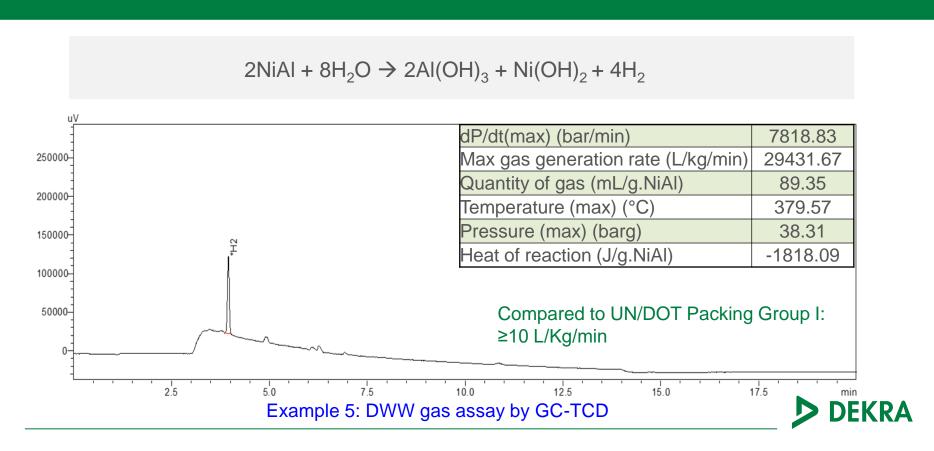
Coupling GC-MS with Calorimeters

Calorimeter (ARC, VSP) provides physical and kinetic data:

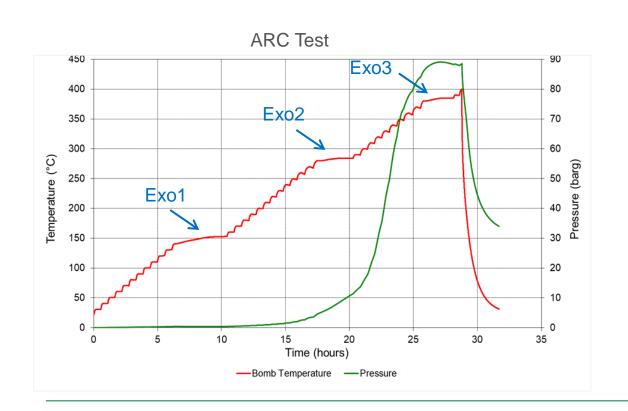
temperature, pressure, rates of temperature rise and pressurization

GC-MS reveals chemical information:

flammability, toxicity, corrosivity. (e.g, requirements of PSM and RPM)

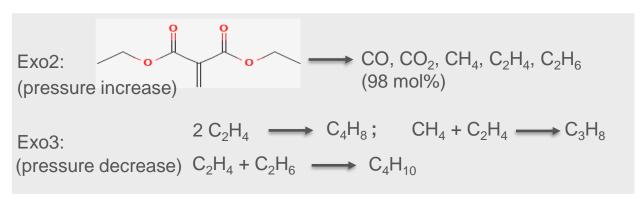

The integration of GC-MS with Calorimeters aid in understanding reaction mechanisms, mitigating risks, and preventing accidents during scale-up processes

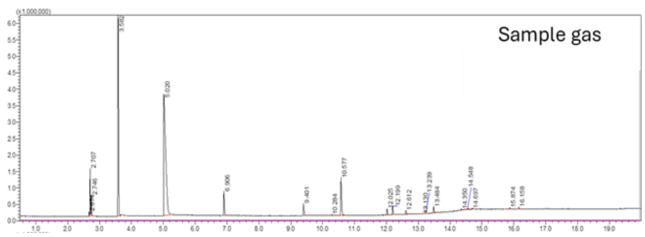
17


Case 5: Dangerous When Wet Test (UN Test N.5)

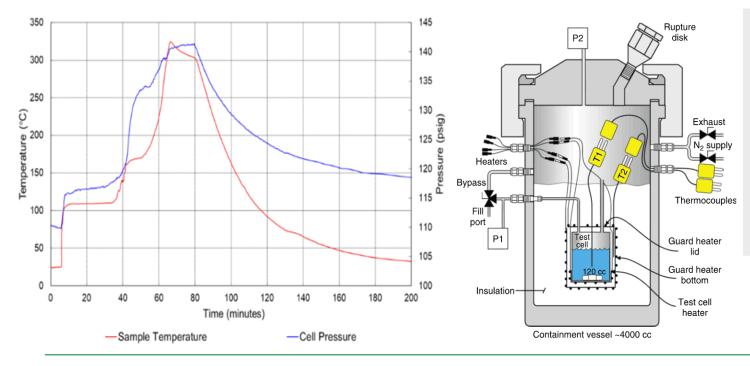
Combination of Calorimeter and GC for heat release, pressurization rate, gas analysis

Case 6: Combined Use with Accelerating Rate Calorimeter


Diethyl 2-methylenemalonate thermal stability



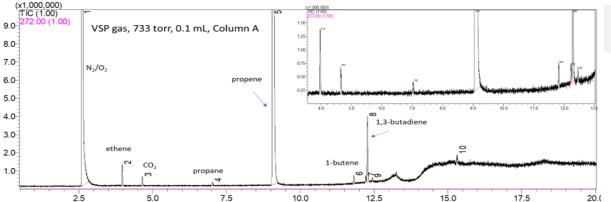
Post-Test ARC Gas Analysis

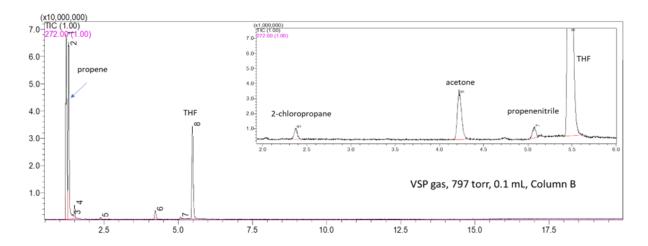

Gas	Measured mole %			
СО	7.26			
CO ₂	62.90			
CH ₄ (Methane)	1.611			
C ₂ H ₆ (Ethane)	8.645			
C ₂ H ₄ (Ethylene)	17.122			
C ₃ H ₈ (Propane)	0.596			
C ₃ H ₆ (Propylene)	0.350			
C ₃ H ₄ (Propadiene)	0.000			
C4 *	1.065			
C ₅ H ₁₂ (Isopentane)	0.013			
n-C ₅ H ₁₂ (Pentane)	0.040			
C ₆ H ₁₄ (Hexane)	0.021			
*Individual C4	*Individual C4 Compounds			
Isobutane	0.025			
n-Butane	0.692			
trans-2-Butene	0.092			
1-Butene	0.129			
Isobutene	0.011			
cis-Butene	cis-Butene 0.059			
1,3-Butadiene	0.058			
SUM	99.62			

Example 6. Hydrocarbon assay by GC-MS

Case 7: Combined Use with Vent Sizing Package

$$Cl_2P(OCH_2CH_2CN) + 4 Pr_2NH \xrightarrow{THF} (Pr_2N)_2P(OCH_2CH_2CN) + 2 Pr_2NH.HCI$$


VSP2 Open Cell Test


To analyze vapor composition & properly handle the effluents during relief in an external fire scenario.

(Pad 110 psig)

Example 7. GCMS Chromatograms for gas from VSP open cell test, column A (top), and column B (bottom)

Composition	mole%
CO ₂	2.71
C ₂ H ₄ (Ethylene)	1.11
C ₃ H ₈ (Propane)	0.34
C ₃ H ₆ (Propylene)	61.63
1-Butene	0.29
trans-2-Butene	0.29
1,3-Butadiene	4.64
Isobutene	0.17
2-Chloropropane	1.01
Acetone	2.45
Propenenitrile	0.25
THF	25.11
SUM (excluding O ₂ , N ₂ & Unidentified)	100.00

Concluding Remarks

- GC-MS is an indispensable tool in process safety, providing detailed chemical analysis.
- The integration of GC-MS with calorimeters will continue to enhance the ability to effectively manage process safety and mitigate risks associated with chemical hazards.

Acknowledgement

Thank Dr. Michael Carolan and Mike Snyder for valuable discussions.

Questions and Comments

Thank you!

