

Reducing the human error impact on Safety Instrumented system (SIS)

Purdue Process Safety & Assurance Center December 5, 2019

Unrestricted © Siemens AG 2018

siemens.com

Your presenter

Charles M. Fialkowski, CFSE
Charles.Fialkowski@siemens.com

- Siemens Director for Process Safety (I&C)
- ISA 84 voting member
- 25 years of Process Industry experience
- ISA course developer/instructor (BMS and SIS)
- Electrical Engineering (OSU)
- Descendent of Cyrus McCormick

Safety Instrumented System (SIS)

A system composed of sensors, logic solvers, and final control elements for the purpose of taking the process to a safe state when pre-determined conditions are violated.

How much safety do we need? (Risk Reduction)

SIS Design Documents

ANSI/ISA 61511: Functional Safety:

Safety Instrumented Systems for the process industry sector, 2018

- 1996 1st edition of ISA 84
- 2004 ISA 84 (IEC 61511 Mod)
- 2016 2nd edition of IEC 61511

Applied to ensure the functional safety requirements are met.

Addresses 2 concepts:

SIS safety life-cycle

Safety integrity levels (SILs).

Safety Instrumented System Performance

What standards can we use to help with this?

Safety Integrity Level (SIL)	Probability of Failure on Demand (PFD)	Risk Reduction Factor (1/PFD)	Safety Availability (1-PFD)
4	≥ .00001 to < .0001	> 10,000 to ≤ 100,000	> 99.99 to ≤ 99.999
3	≥ .0001 to < .001	> 1,000 to ≤ 10,000	> 99.9 to ≤ 99.99
2	≥ .001 to < .01	> 100 to ≤ 1,000	> 99 to ≤ 99.9
1	≥ .01 to < .1	> 10 to ≤ 100	> 90 to ≤ 99

Decide how much safety performance you need, and design to meet it

Control system failure – Root Causes

From 'Out Of Control'
(A compilation of incidents involving control systems) by the United Kingdom Health and Safety Executive (UK HSE)

Safety Design Lifecycle (ANSI/ISA 61511, Clause 6)

Integrated safety lifecycle tool

- ✓ Documentation
- √ System Validation
- ✓ Design and Engineering
- ✓ Installation and Commissioning
- ✓ Operation and maintenance
- √ Modifications (MOC)

Design and Engineering

 L_1

L₂

Installation and commissioning

SIEMENS

Ingenuity for life

Integrated Documentation

- √ Validation Reports
- ✓On-Line Changes
- √ Bypass Management
- √ First out identification

Operations and maintenance

SIEMENS

Ingenuity for life

HMI Visualization

- System diagnostics
- Alarm management
- MOC documentation
- Sequence of Events (SOE) reporting
- Maintenance overide

Questions and Answers

