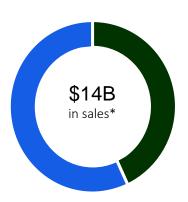

Potential Explosion Hazards with Using DMSO and DMF in Chemical Reactions

Qiang Yang

Product & Process Technology R&D, Corteva Agriscience


P2SAC Fall Conference, Purdue University, December 10, 2020

Corteva Agriscience™

seeds

crop protection

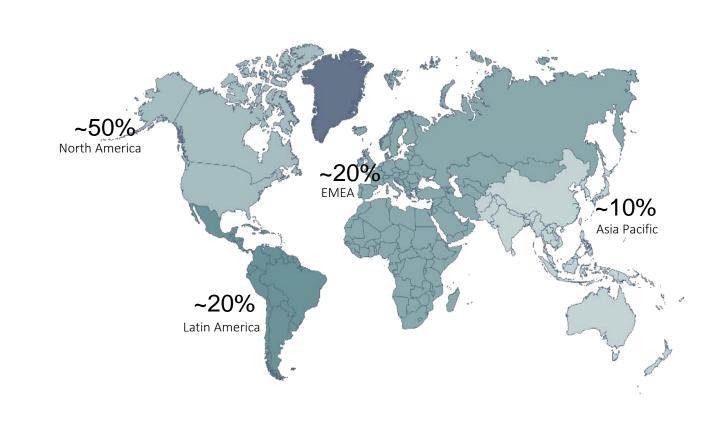
*Excludes revenue associated with remedies

22,000

people strong

130+

countries



crops

65+

active ingredients

Our Purpose

To enrich the lives of those who produce and those who consume, ensuring progress for generations to come.

Stand Tall

Build Together

Be Curious

Be Upstanding

OUR 2030 COMMITMENTS TO SUSTAINABILITY

Learn more at sustainability.corteva.com

- Provide training to 25 million farmers
- Enrich the lives of 500 million smallholder farmers
- Decrease greenhouse gas emissions while increasing yields

- Improve soil health on 30 million hectares
- · Advance water stewardship
- Enhance biodiversity on 10 million hectares

- Keep employees safe
- Empower women, enable youth, and engage communities
- Volunteer 1 million hours
- Increase supply chain transparency

- Require sustainability criteria for new products
- Manage our greenhouse gas emissions
- Use only sustainable packaging
- Increase our sites' sustainability efforts

Why be Concerned with Process Safety?

The 12 Principles of Green Chemistry

- · Prevent Waste
- Design Safer Chemicals and Products
- Design Less Hazardous Chemical Syntheses
- Use Safer Solvents/ Reaction Conditions
- Increase Energy Efficiency
- Use Renewable Feedstocks
- Design Chemicals and Products that Degrade After Use
- Minimize the Potential for Accidents
- Analyze in Real Time to Prevent Pollution
- Use Catalysts, Not Stoichiometric Reagents
- Maximize Atom Economy
- Avoid Chemical Derivatives

To avoid incidents like these!

Process Safety Begins in the Lab!

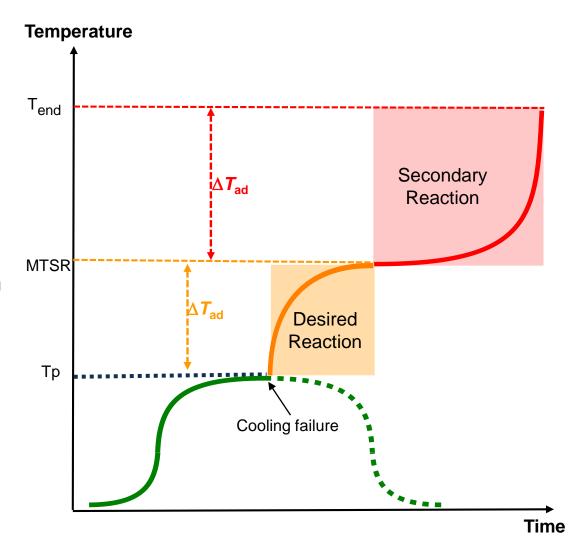
Why?

- Most reactive chemical incidents occur in research laboratories.
- Most incidents involving a chemical reaction could have been prevented, if the process hazards were understood beforehand.

Solution

- Process safety should be considered early to avoid surprises during scale-up. Early
 identification of significant exotherms should be used to trigger the assessment of thermal
 hazard risks related to the process before scale-up.
- Personal safety should be considered always. A safe, well-controlled working environment in both the lab and plant is key to avoiding incidents during synthesis, safety studies and manufacturing.

 Courtesy of Mettler Toledo

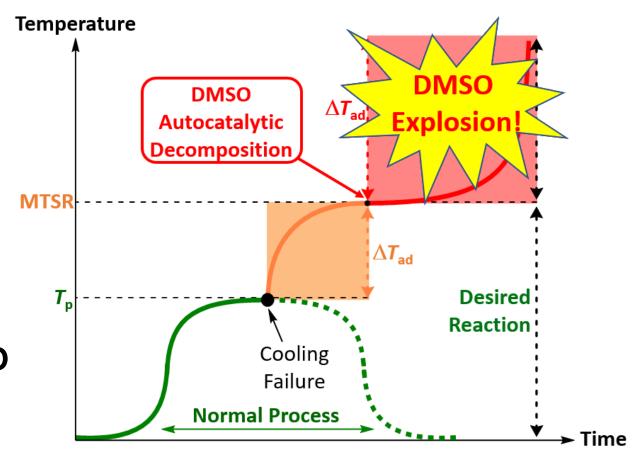

Thermal Hazard Analysis

T_p: Process temperature

 ΔT_{ad} : Adiabatic temperature rise

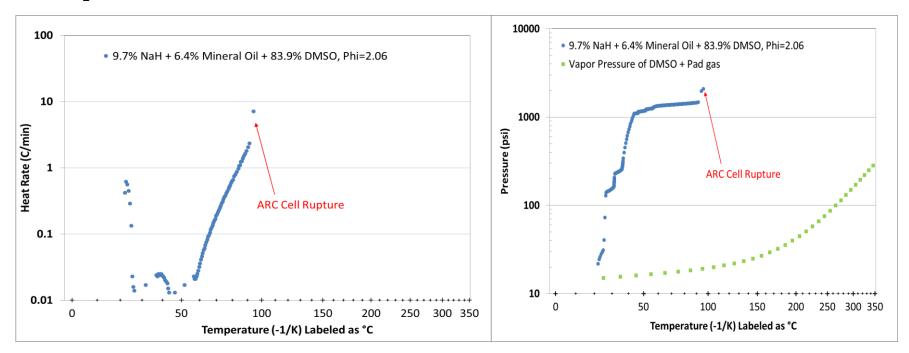
MTSR: $T_p + \Delta T_{ad}$

- Desired Reaction can be characterized using Reaction Calorimeters such as RC1 and HF Calorimeter.
- Secondary reaction can be characterized with DSC, ARC, or VSP, etc.
- If the reaction reaches the MTSR, will it trigger a decomposition reaction?
- Is there a potential thermal runaway?



Stoessel, F. Basel, CH, WILEY-VCH Verlag GmbH & Co. KGaA, 2008

DMSO is Incompatible with a Variety of Substances...


- Bases
- Acids
- Halides
- Metals and metal ions
- Electrophiles
- Oxidants
- Reductants
- Almost any substances in DMSO will lower the onset temperature and increase the severity of DMSO decomposition.

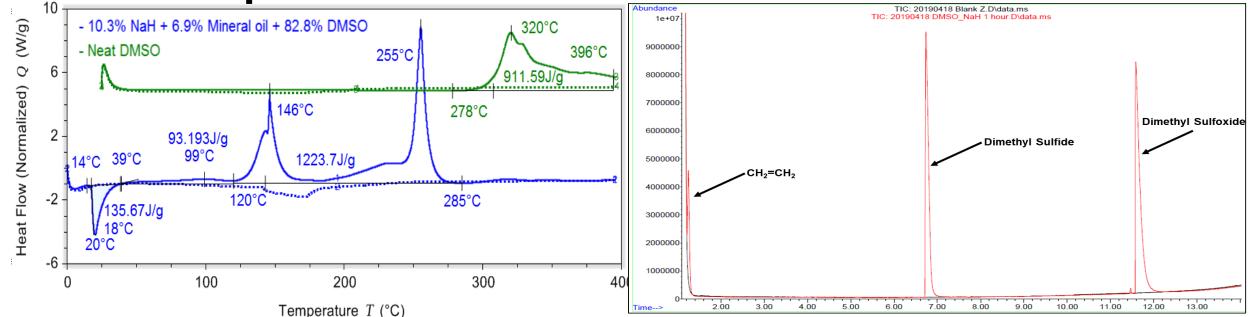
Org. Process Res. Dev. 2020, 24, 916–939.

Potential Explosion Hazards of DMSO with Bases: NaH

- The ARC analysis was performed with 4.55 grams of a mixture of 16.1% NaH in mineral oil (60 wt%) and 83.9% DMSO.
- ARC recorded two small exothermic events, followed by a significant exothermic event with an onset temperature of 56.8 °C.

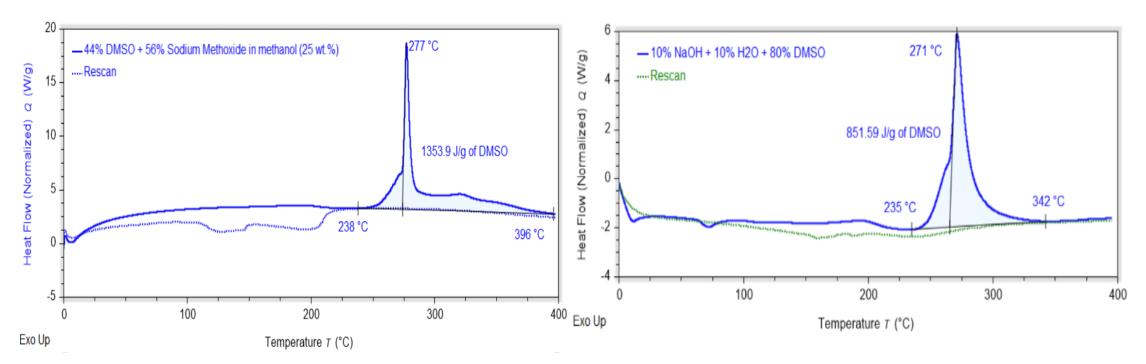
Org. Process Res. Dev. 2019, 23, 2210–2217.

Potential Explosion Hazards of DMSO with Bases: NaH

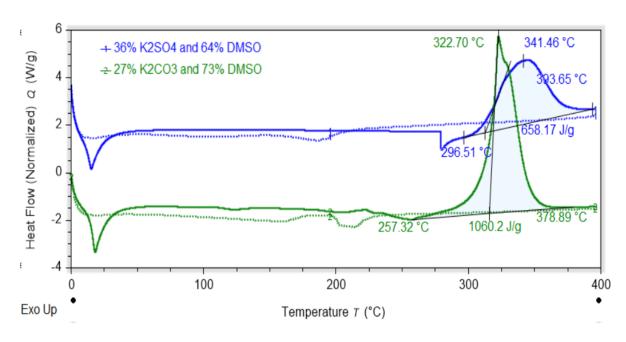


- This exotherm caused the rupture of an ARC cell designed with an average burst pressure of 14,500 psi.
- The force generated from this explosion was strong enough to displace the reactor housing.

Org. Process Res. Dev. 2019, 23, 2210–2217.

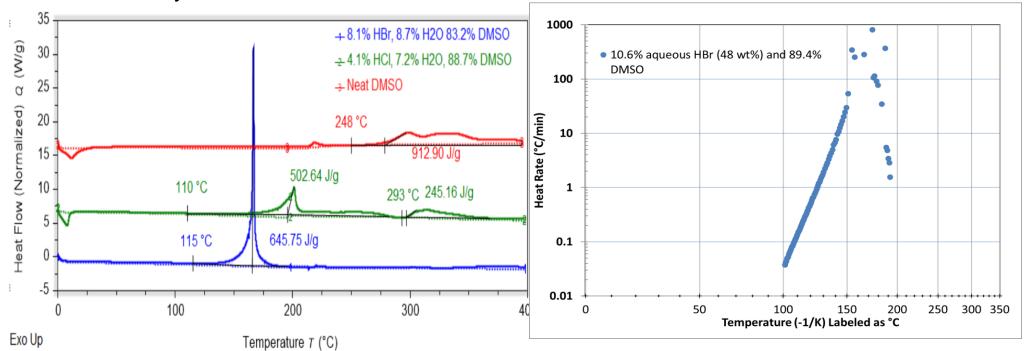

Potential Explosion Hazards of DMSO with Bases: NaH

- The minor event (39 °C to 120 °C) generated a significant amount of non-condensable gases that raised pressure from 129 to 1289 psi.
- The combined total heat release of –810.2 J/g was deemed explosive according to the Yoshida correlation.
- Gaseous products from the minor event include ethylene (CH₂=CH₂) and dimethyl sulfide (CH₃SCH₃).


Potential Hazards of DMSO with Bases: NaOMe and NaOH

- DSC of a mixture of 56% NaOMe solution in MeOH (25 wt% in MeOH) and 44% DMSO showed a lower onset temperature of 238 °C, with a total energy of -1354 J/g (normalized to the mass of DMSO).
- DSC of a mixture of 20% aqueous NaOH (50 wt%) and 80% DMSO detected an exothermic event at 235 °C, with a total energy output of –852 J/g of DMSO.
- The sharp narrow peaks are characteristic of autocatalytic reactions that represent much more significant hazards of thermal decomposition

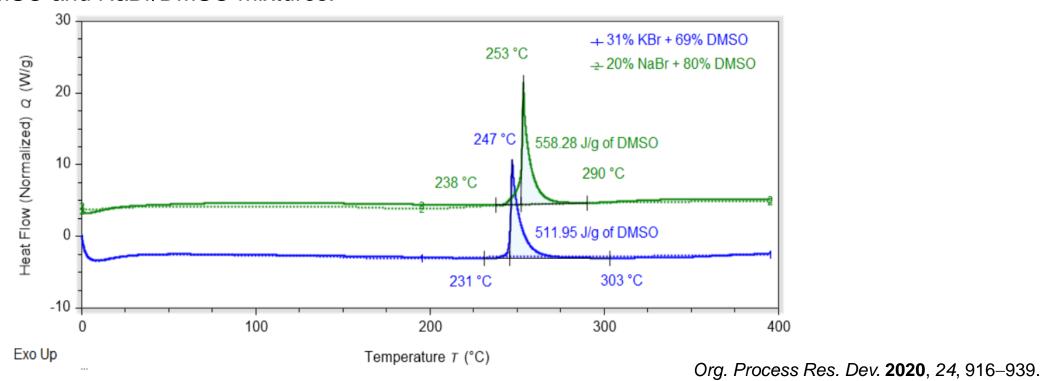
Potential Hazards of DMSO with a Weaker Base, Na₂CO₃


- DSC of a mixture of 73 wt% of DMSO and 27 wt% of K₂CO₃ showed a significant exothermic event with an onset temperature of 257 °C and an energy release of –1060 J/g (normalized to the mass of DMSO).
- A control experiment of a mixture of 36 wt% of K₂SO₄ and 64 wt% of DMSO indicated decomposition occurred at ca. 296 °C with a total energy release of –658 J/g (normalized to the mass of DMSO).

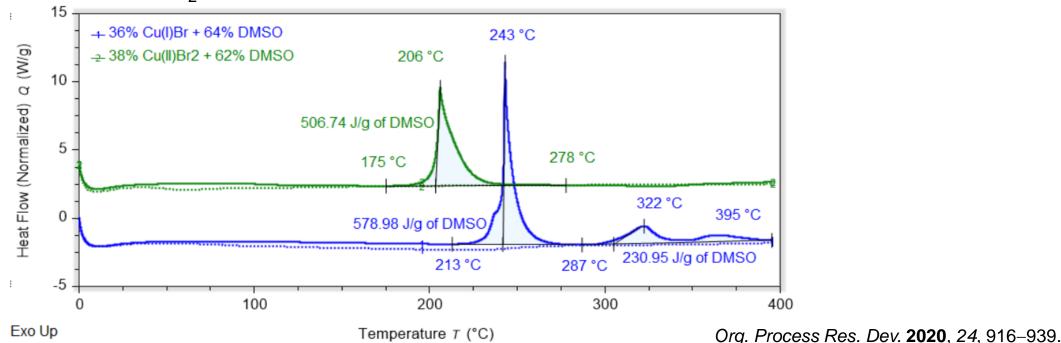
Org. Process Res. Dev. 2020, 24, 916-939.

Potential Explosion Hazards of DMSO with Acids

- An explosion occurred in 1983 from a mixture of DMSO and p-nitrotoluenesulfonic acid in a 2000-gallon reactor at 60 °C.
- Another explosion occurred in 1991 during the vacuum distillation of an old mixture of 88% DMSO, 7% water, and 5% 2-bromomethyl-1,3-dioxane. HBr was detected as one of degradants.
- DSC and ARC analysis of HBr/DMSO and HCl/DMSO mixtures:



Potential Explosion Hazards of DMSO with Halides

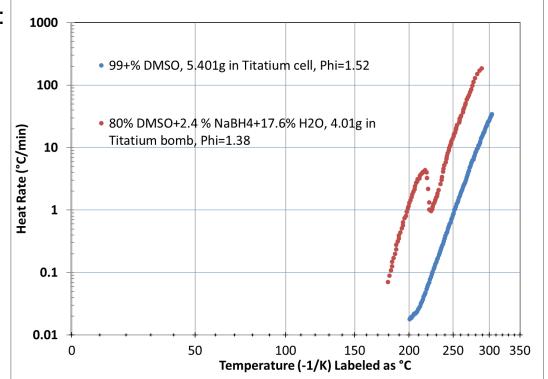

- An explosion occurred when 0.105 mol of IF₅ was added to a cold solution of 0.105 mol of DMSO in sulfolane.
- A detonation was reported when 880 g of DMSO was treated with 600 g of methyl bromide (MeBr).
- Two large scale explosions associated with the decomposition of DMSO during recovery of DMSO via distillation from mixtures containing potassium bromide (KBr) occurred in 1977 and 1979, respectively.
- DSC of KBr/DMSO and NaBr/DMSO mixtures:

Potential Explosion Hazards of DMSO with Metals and Salts

- A runaway reaction involving the interaction of copper wool with DMSO in the presence of trichloroacetic acid.
- Violent reaction of DMSO with AgF₂ was reported in 1969.
- A reaction mixture exploded during scale up of a coordinatively linked Yb Metal—Organic Framework (MOF) involving 12 mL of DMSO.
- DSC of CuBr/DMSO and CuBr₂/DMSO mixtures:

Potential Explosion Hazards of DMSO with Electrophiles

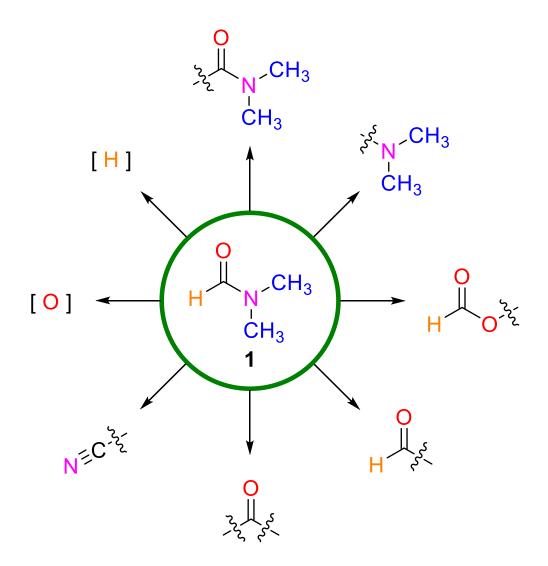
- DMSO reacts violently with electrophiles such as cyanuric chloride, acetyl chloride, benzoyl chloride, benzenesulfonyl chloride, thionyl chloride, phosphoryl chloride, and phosphorus trichloride.
- Mancuso et al. observed that oxalyl chloride reacted explosively with DMSO at room temperature.
- The byproducts from the reaction of DMSO with electrophiles include acids and/or chloride ion, which could further lower the onset temperature and increase the severity of DMSO decomposition to aggravate the potential safety hazards.
- Other electrophiles such as alkyl halides, sulfur trioxide (SO₃), sulfur dichloride (SCl₂), sulfur monochloride (S₂Cl₂), silicon tetrachloride (SiCl₄), carbonyl diisothiocyanate, and P₄O₁₀, etc. are also known to cause potential hazards associated with the thermal decomposition of DMSO.


Potential Explosion Hazards of DMSO with Oxidants

- An explosion involving thermal decomposition of DMSO in the presence of HClO₄ was published in 1971.
- A fatality caused by explosion involving DMSO and HClO₄ was reported in 1991 when DMSO was accidentally in contact with residual HClO₄ in a titrimeter to determine bromamine acid content using HClO₄.
- Metal perchlorates solvated by DMSO are generally powerful explosives.
- Magnesium perchlorate $[Mg(ClO_4)_2]$, a drying agent that has been frequently used for the preparation of anhydrous DMSO, caused an explosion during the distillation of DMSO over anhydrous $Mg(ClO_4)_2$.
- Other oxidants such as nitrogen dioxide (NO₂), metal chlorates, and metal
 permanganates, etc. have also been reported to react violently with DMSO to result in
 potential safety hazards.

Potential Explosion Hazards of DMSO with Reductants

- DMSO is reduced to dimethyl sulfide by certain reductants. This reaction could be violently exothermic when strong reductants are used.
- The reductants and catalysts employed in the reactions, as well as byproducts formed during the reduction reactions could potentially lower the onset temperature and/or increase the severity of the DMSO decomposition to result in runaway scenarios or even explosions.
- ARC of NaBH₄/H₂O/DMSO:



Org. Process Res. Dev. 2020, 24, 916-939.

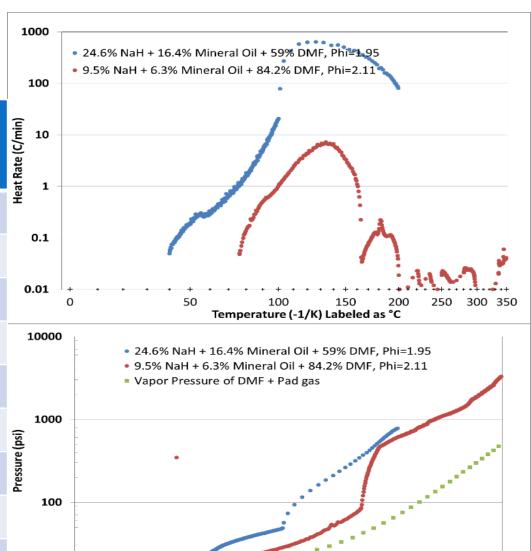
N,N-Dimethylformamide (DMF)

- DMF is widely used as a polar aprotic solvent in synthetic organic chemistry to effect a broad range of chemical reactions because of its excellent dissolution property that solubilizes both organic and inorganic species
- DMF has found broad applications in a wide variety of chemical transformations

Org. Process Res. Dev. 2020, 24, 1586-1601.

DMF is Incompatible with a Variety of Chemicals...

- Bases
- Acids
- Halogenated reagents
- Oxidants
- Reductants
- Please fully analyze the safety profile when DMF is used in a chemical reaction!



Org. Process Res. Dev. 2020, 24, 1586-1601.

Thermal Stability of NaH in DMF

Sample Description	9.5% NaH + 6.3% mineral oil + 84.2% DMF	24.6% NaH + 16.4% mineral oil + 59% DMF	Heat Rate (C/min)
Total sample mass (g)	4.1234	3.3896	-
Cp of sample (J/g/°C)	2.010	1.930	(
ARC cell mass (g)	21.8926	14.8079	0.
Set end Temperature (°C)	350	200	1
Phi	2.11	1.95	
Onset Temperature (°C)	76.1	39.8	(psi)
Peak Temperature (°C)	133.8	126.2	Pressure (psi)
End Temperature (°C)	200.7	>199.7	
Max self-heating rate (°C/min)	7.23	634.7	
Total heat output (J/g)	-528.4	>-601.8	

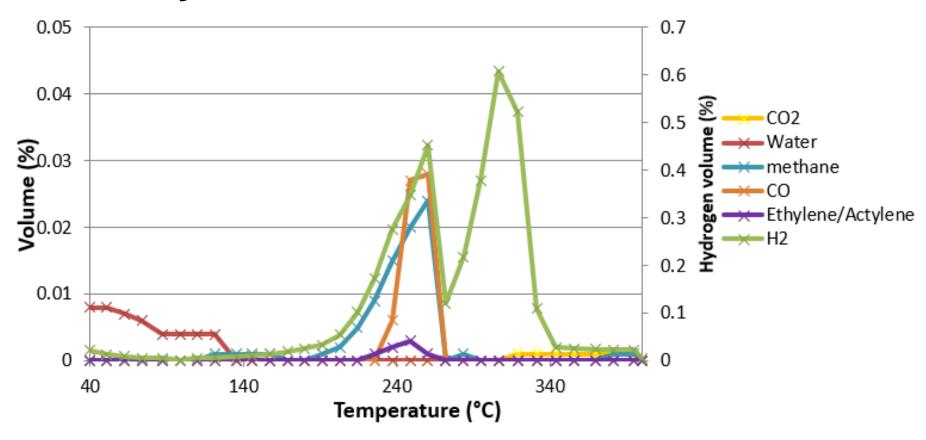
50

10

Org. Process Res. Dev. 2019, 23, 2210–2217.

Temperature (-1/K) Labeled as °C

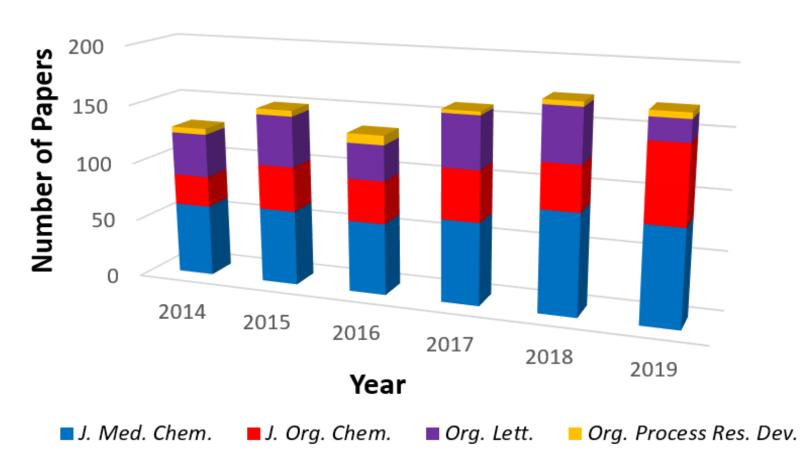
150


200

100

250 300 350

Thermal Stability of NaH in DMF


- EGA Micro-GC analysis revealed the presence of CO₂, water, methane, CO, ethylene (CH₂=CH₂)/acetylene, and H₂ in the decomposition products, indicating potential radical decomposition pathways.
- Similar exothermic decomposition behavior was observed with NaH/DMAc mixtures.

Org. Process Res. Dev. 2019, 23, 2210-2217.

NaH/DMF Combination Is Still Very Popular

Published NaH/DMF Conditions in 2014–2019

Org. Process Res. Dev. 2019, 23, 1586-1601.

Explosion Hazards of DMF Mixtures

With Acids:

- Hydrolysis of DMF in the presence of acids, especially strong acids, can be hazardous because the hydrolysis product, HCO₂H, can further decompose to release noncondensable and flammable gases.
- A bottle of SO₃/DMF complex exploded during storage. it was suspected that SO₃ reacted with moisture to form sulfuric acid (H₂SO₄), which subsequently decomposed DMF.
- DSC of a sample of SO₃/DMF complex indicated two significant exothermic events at 114 °C and 228 °C with energy release of -254 J/g and -646 J/g, respectively when conducted under air in the headspace.

With halogenated reagents:

- A runaway incident involving DMF/SOCl₂ mixture was reported in 1977 by Spitulnik at Eastman Kodak.
- Sudden exotherm and pressure rise caused by spontaneous decomposition occurred in a 400-L reactor during vacuum distillation of a SOCl₂/DMF mixture to remove SO₂.
- Violent decomposition during distillation to remove sulfur dioxide (SO₂) from a SOCl₂/DMF mixture was also reported by Cardillo in 1992.

Explosion Hazards of DMF Mixtures

With Oxidants:

- A flame suddenly flashed from the surface of the DMF solution and sprayed the solution all over the inside
 of the hood when CrO₃ was added to the reaction mixture in DMF.
- A laboratory explosion involving KMnO₄ and DMF was reported in 1980 by Finlay at E. I. du Pont de Nemours & Co.
- Kubota and Takeuchi at Fujisawa Pharmaceuticals Co. Ltd. reported an explosion involving a mixture of DMF with m-CPBA.

With Reductants:

A violent explosion occurred from a solution of saturated solution of 13 kg of NaBH₄ in 70 kg of DMF at 17
 °C at a plant and caused a spontaneous ignition of flammable gases released from the explosion.

With other Substances:

Methylene diisocyanate, triethylaluminium, potassium methylselenide, and phosphorus pentoxide (P₄O₁₀)
have also been reported to react exothermically with DMF.

Summary

- The explosion hazards with using DMSO and DMF in chemical reactions have been well-documented in the literature.
- The dangers still remain underappreciated and poorly communicated.
- The data and examples confirm that mixtures involving DMSO and DMF undergo exothermic decomposition at relatively low temperatures, with the generation of non-condensable gases.
- Please help promote awareness of these safety hazards and encourage the chemistry community to identify safer alternatives!

Acknowledgements

David E. Ejah Siyu Tu

James Henkelis Craig Tucker

Leo Huang Suhelen Vásquez-Céspedes

Xiaoyong Li Nicola Webb

Ming Sheng Eric Wiensch

Gregory T. Whiteker

Honglu Zhang

Yiqun Zhang

Jing Yu

Support of the Corteva Product & Process Technology R&D Leadership

Thank you for your attention!

®™Trademarks of Dow AgroSciences, DuPont, or Pioneer and their affiliated companies or respective owners The Dow Diamond is a trademark of The Dow Chemical Company

Call for Submission to a Joint Virtual Special Issue

"Process Safety from Bench to Pilot to Plant" by ACS Chem. Health Saf., Org. Process Res. Dev., and J. Loss Prevent. Proc.

- Chemical safety research and information that informs fundamental chemical safety knowledge
- Effective chemical hygiene practices, equipment and procedure design, and qualitative or quantitative risk assessment tools
- Research that addresses human and organizational factors as well as technical engineering controls
- Classical organic process safety studies to evaluate the parameters needed to scale-up organic chemistry such as in preparation for application in multi-purpose pilot and commercial facilities
- Consequence of fire, explosion and toxic release in the process industries
- Use of bench-scale and pilot-plant data for process safety assurance in industrial plant

S. Camille Peres

ACS CHAS Guest Editor

peres@tamu.edu

Qingsheng (Sam) Wang
ACS CHAS Guest Editor
qwang@tamu.edu
qi

Qiang Yang
OPR&D Guest Editor
qiang.yang@corteva.com

Ashok Dastidar

JLPPI Guest Editor

dastidar@fauske.com

