Purdue Process Safety & Assurance Center - P2SAC

Highlights

Ray A. Mentzer
Visiting Professor
Executive Director, P2SAC

Charles D. Davidson School of Chemical Engineering
Purdue University

December 5, 2019
Process Safety

Bhopal, India – 1984; +2,000 fatalities

West Pharmaceuticals – 2003; 6 fatalities

BP Texas City, 2005; 15 fatalities

Texas Tech University; Chemistry Lab – 2010
P2SAC Formed in 2014

Process Safety a challenging quantitative / technical discipline; scope not widely recognized

Conduct process safety related research focusing on fundamental science

Teach rigorous process safety ChE core course (+170 UG and Grad students enrolled Fall ‘18)

Engage UG & Professional MS students in process safety research

Source of expertise for industry and other stakeholders regarding process safety related standards & best practices

Focus on oil & gas industry, chemicals, pharmaceuticals, agriculture, consumer products and manufacturing

Research projects solicited from industry sponsors, as well as other stakeholders such as academia & government labs

Enhance education experience of all Purdue ChE graduates
Process Safety Conferences Held Each Semester

Attendees – December 5, 2019 Fall Conference

<table>
<thead>
<tr>
<th>Sponsors</th>
<th>Guests</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcuTech</td>
<td>aeSolutions</td>
</tr>
<tr>
<td>AMGEN</td>
<td>AMRI</td>
</tr>
<tr>
<td>BP</td>
<td>BakerRisk</td>
</tr>
<tr>
<td>Chevron</td>
<td>Catalent*</td>
</tr>
<tr>
<td>CountryMark</td>
<td>CCPS</td>
</tr>
<tr>
<td>Dow</td>
<td>CDC - NIOSH</td>
</tr>
<tr>
<td>Fauske & Associates</td>
<td>Cook</td>
</tr>
<tr>
<td>GSK</td>
<td>Corteva AgriScience</td>
</tr>
<tr>
<td>Honeywell</td>
<td>Cummins</td>
</tr>
<tr>
<td>Kenexis</td>
<td>DEKRA</td>
</tr>
<tr>
<td>Lilly</td>
<td>Endress+Hauser</td>
</tr>
<tr>
<td>Marsh Risk</td>
<td>Evonik</td>
</tr>
<tr>
<td>Phillips 66</td>
<td>HEL*</td>
</tr>
<tr>
<td>Pfizer</td>
<td>Huntsman*</td>
</tr>
<tr>
<td>SABIC</td>
<td>Jensen Hughes</td>
</tr>
<tr>
<td>3M</td>
<td>Johnson Matthey</td>
</tr>
<tr>
<td></td>
<td>P&G*</td>
</tr>
<tr>
<td></td>
<td>Siemens</td>
</tr>
<tr>
<td></td>
<td>Tate & Lyle</td>
</tr>
<tr>
<td></td>
<td>Vertex</td>
</tr>
</tbody>
</table>

*denotes 1st meeting

On-going dialog with other Depts:
AAE, ABE, CHEM, IE, IPPH, ME & CV
Multiple Faculty Engaged in Process Safety Related Research
– ’19 / ’20 program

PhD Research

Sensing dust concentrations by imaging …
… Safer materials and processing design for
next-generation printed electronics

New directions in prevention by catalyst …
design
…Optimal placement of detectors and new
directions driven by systems engineering
approaches

Modeling and uncertainty analysis of dust …
explosions
… Battery safety by materials design

High throughput quantum chemical
calculation of Benson group values for
reliable thermodynamic calculations ……
…Catalyst design and reactor runaway:
selective oxidation of alcohols

The role of chemical agents (surfactants) and
electrostatics in coalescence …
Lab Safety – Academic & Industrial

Focused on:
1. Surveys and establishing / sharing best practices
2. Develop software tool for hazard analysis, toxicity, flammability, etc

Cybersecurity Best Practices

Problem: Cybersecurity implications of proposed CISTAR facilities: remote sites, unmanned well-site facilities or regional/centralized processing facilities

300% increase in energy sector cyber-attacks since ‘12
Survey questions in three subject areas: demographics, cybersecurity & physical security

80% of companies employ 4+ cyber professionals
93% of companies use a layered cyber defense
- 100% use firewall
- 93% use multi-factor authentication
- 80% use demilitarized zones
- 73% use virtual machines

Best Practices
- Password requirements
- Password changes
- Credential audits
- Scheduled software patch cycles
- Antivirus software
- Two-factor authentication
- Demilitarized zones
- Cloud-based services
ChE Professional Masters Program

Grown from 9 students in ‘15 / ‘16 academic year to 70 in Fall 2019

2019 Cohort: 34% female; 79% int’l; $84k avg starting salary 2019, 100% placement within 6 mos

Six areas of concentration:
+ Energy Systems Fundamentals & Processes
+ Kinetics, Catalysis, and Reaction Engineering
+ Biochemical Engineering,
+ Polymer Science and Engineering
+ Pharmaceutical Engineering
+ Gas and Petroleum Engineering

Program scheduled for one year
+ Students take 2 core courses; 3 in area of concentration; 3 in Management;
 followed by summer research project
+ Additional semester required for those without BS in chemical engineering

Summer research projects are typically suggested and led / mentored by industry
+ Students remain on campus with ~30 minute weekly call with industry mentor
+ Two-Three students per projects noted above; +800 hrs of ‘free’ research
+ Summer ‘19: Nine process safety related projects being pursued; ~50% of pgm
+ Companies participating: Air Liquide, AMGEN, Catalent, Chevron, Cook, CountryMark, Dow, Dow AgroScience, ExxonMobil, Fauske, Fresenius, Kenexis, Pioneer Oil, SP2, 3M
P2SAC Research Program – Prof MS

AMGEN
- Thermal Hazards in the Pharmaceutical Industry – ‘19

Chevron / DowAgro
- Leveraging Data Science for Oil & Gas Asset Integrity Management – ‘19
- Dimensional analysis and similitude for multiphase flows in pipe reactors – ’19

CountryMark
- Co-Processing Renewable Feedstock in a Distillate Hydrotreater – ’19
- Optimization of Gasoline & Diesel Product Blending – ’19

Dow Agro
- A systems engineering approach for managing changes in chemical process R&D labs – ’18

ExxonMobil
- Oil field development approach in a high regulation environment – ‘19
- Acoustically-induced vibration of piping systems – ‘18

Fauske
- Design and construct a prototype of a benchtop tool to be used to screen chemicals for reactivity – ‘19

Kenexis
- Determination of Minimum Sufficient Dispersion Model Scenarios for Gas Detection Optimization - ‘19
- Improving Understanding of Hazards of Process Plants through PHA Gamification – ’19
- Develop a scheme for conducting process hazard analyses and develop guidance for automating – ‘18
- Validate large scale consequence modeling with Middle East propane release – ‘17

Lilly
- Compilation of thermal hazard safety data for amide coupling reagents – ‘17

Shell
- Quantification of toxicity effects of H₂S ingress into buildings / temporary refuge – ‘18

3M
- Understanding Ignition Properties of Flammable Gas / Particulate Mixtures & Mitigation Through Inerting – ‘19
Industry Suggested Research - per Dec ‘18 Conference; input from 19 cos

PHAs
Thoroughly analyze PHA shortcomings that led to incidents & develop targeted training
Software to mine PHA / HAZOP data; make the data more useful to communicate to front-line

Risk
High consequence scenarios; critical risks; alternate approaches to identify and prevent major incidents
Safety pyramid; recognition that only a small fraction of less severe incidents can lead to Tier 1 significant incidents; which ones?

Reaction engineering
Management of exothermic reactions – hydrogenation, etc
Reactive chemistry calorimetric measurements

Other
Effectively reducing human errors, which are often the cause of incidents
Computational tools for predicting properties
Best practices for inerting of vapor space above tanks
Challenged with start / initiation / progression of process safety journey
Challenged to effectively articulate breadth / desirability of process safety positions; & fill positions
P2SAC Research Program – UG

2019
Role of human error in process safety incidents & prevention - ongoing
Identification of specific deficiencies in PHAs that led to major incidents - ongoing
Examination of incidents involving fired heaters and consequence modeling tools (PMP) – ongoing
Best practices for prevention of tank overflow incidents - ongoing
Analysis of process safety incidents across 14 industries & comparison of root causes - continuing
Analysis of process safety incidents in the pharmaceutical industry (PMP) - continuing
Calorimetric study of pharmaceutical reagents by ARSST (PMP) – continuing

2018
Extend Benson group data base for thermodynamic property prediction – evolved to PhD
Determine and predict temperature at which time to max rate of reaction is 24 hr (PMP) - complete
Develop guidance on energy released during testing vs. volume of sample for pharma industry (PMP) - complete
Risk and reliability of aged natural gas pipelines - published
Compilation of process safety related software commercially available - complete
Develop database of MIEs of dusts with focus on pharma / mixtures – evolved to PhD

2017
Comparison of global process safety regulations - published
Experience with corrosion under insulation; detection & mitigation
Experience with LNG metallurgy failures

2016
Analysis of process safety incidents in the pharmaceutical & agriculture industries
Study of incidents involving reactive chemical hazards
Process safety incidents involving nanomaterials
Two On-going PMP Research Projects

ARSST Calorimeter - Advanced Reactive System Screening Tool
• Used to study the decomposition of DMSO
• Records temperature & pressure data over time
• Calculated the ΔH_R, E_a, and the Pre-Exponential Factor from the DMSO Decomposition reaction
• Compared the thermochemical properties of the DMSO decomposition under acidic conditions by mixing DMSO with acids of varying pKa’s
• Obtained a Linear Free Energy Relationship between the onset T of the DMSO decomposition reaction and the pKa of acid added to the system
• Analyzed the change in this Linear Free Energy Relationship under different concentrations of acid with DMSO

Analysis of Root Causes of Incidents across 14 Industries
• Studied: Refining, Chemicals, Oil & Gas, Storage, Pipeline, Fertilizer, Pharmaceutical, Agriculture, Food, … 3 primary incidents per industry
• Identified 14 primary root causes; several per incident
• Analyzing significant data set in terms of root causes, fatalities, monetary damage, impact beyond plant fence, state of operation, and developed / developing country
Two On-going Undergraduate Research Projects

PHA Shortcomings Leading to Incidents
- Identified ~20 serious incidents with inadequate PHA as a root cause
- Categorizing the shortcomings
- Plan to locate or develop guidance materials to address shortcomings

Incidents Resulting from Human Error

Categories of error
- Commission: Intentional & Un-intentional
- Omission: Intentional & Un-intentional
- Competency

Causes of error: Stress (Time issues, Work environment), Task Difficulty/Complexity, Fitness of Duty, Supervision, Communication, Lack of qualification

Incident Investigation & Analysis – Examples

<table>
<thead>
<tr>
<th>Incident</th>
<th>Description</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP Amoco (2001)</td>
<td>Workers open vessel containing accumulated, pressurized polymer</td>
<td>Commission, accidental</td>
</tr>
<tr>
<td>Three Mile island (1979)</td>
<td>Lapse in attention resulting in failure to open valve after maintenance</td>
<td>Omission, accidental</td>
</tr>
</tbody>
</table>

Possible Error Mitigation techniques
- Task Analysis
- Human Error Identification:
 - Hfacs
 - SHERPA (Systematic Human Error Reduction and Prediction Approach)
 - Classify incident using error possibilities e.g. action, checking, retrieval, transmission or diagnostic errors.
Personnel vs. Process Safety & Metrics
Applicable regulations: OSHA PSM, EPA RMP, etc
Source Term Modeling
Toxicants & Industrial Hygiene
Toxic/Flammable Gas Release
Dispersion Modeling
Fire & Explosion Protection
Chemical Reactivity
Relief System Design
Hazards Identification (HAZOP, ..)
Risk Assessment (Matrix, QRA, ..)
Accident Investigations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Guide Word</th>
<th>Deviation</th>
<th>Causes</th>
<th>Consequences</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node # _: Design Intent:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HAZOP

Typical 4x4 Risk Matrix

<table>
<thead>
<tr>
<th>Severity</th>
<th>Likelihood</th>
<th>Frequent</th>
<th>Possible</th>
<th>Rare</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>Very High</td>
<td>Very High</td>
<td>High</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Serious</td>
<td>Very High</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Incidental</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>
2019 P2SAC Highlights

- Four new company Sponsors
- Progressed 10 PhD / 9 PMP / 8 UG research projects
- 19 P2SAC related PMP projects suggested for summer ’19; 9 chosen
- Installation & initial testing with Fauske donated ARSST calorimeter
- Active engagement of multiple companies in student research via Skype, teleconference, etc
- Department effort seeking to name / endow P2SAC, as well as process safety chair / professorship
Typical Sponsor agreement is $25k / year for 3 years