

TEAM: DHRUV PATEL, XINYU ZHEN MENTOR: CAITLIN PRIGGE 8/5/2020

Contents

I. Introduction

II. Indoor modeling

- Core Parameters
- TNT Model
- Fire Simulations by FDS
- Explosion and Toxic Release Model
- Computational Fluid Dynamics (CFD) Model

I. INTRODUCTION

INTRODUCTION

Objective

Identify consequences related to hazardous chemicals; Build models to prevent and mitigate severity of accidents. **Chemicals**

Toluene; MEK(Methyl Ethyl Ketone); IPA(Isopropanol); Ethyl Acetate Software

FDS-SMV(Fire Dynamics Simulation-Smokeview); CFD; Microsoft Excel **Reference**

API 752(American Petroleum Institute); Guidelines from CCPS(Center for Chemical Process Safety); FDS-SMV User's Guide etc.

II. INDOOR MODELING

CORE PARAMETERS

FACTORS AFFECTING SEVERITY OF	Mass of fuel released	Flame speed	Energy released	Overpressure	Reflection parameters	Ventilation	Fill level	Failure pressure	Fluid temperature	Fragment projectiles
Vapor Cloud Explosion	~	~	~	~	~	~	×	×	×	×
Pressure Vessel Burst	×	×	~	~	~	×	~	~	~	~
Fire	*	×	×	×	×	~	×	×	~	×
Toxic Release	~	×	×	×	×	×	×	×	~	*

FACTORS AFFECTING SEVERITY OF	Composition	Operating pressure	Event duration	Thermal flux	Flammable gas concentration	Release rate	Endpoint of analysis	Toxic concentration and time	Occupant vulnerability
Vapor Cloud Explosion	×	×	×	×	×	×	×	×	×
Pressure Vessel Burst	×	×	×	×	×	×	×	×	×
Fire	~	~	~	~	~	~	×	×	×
Toxic Release	~	~	~	×	×	×	~	~	~

- Mass of Fuel released
- Overpressure
- Ventilation
- Fluid Temperature
- Event Duration
- Thermal Flux
- Flammable Gas Concentration
- Release Rate
- Toxic Concentration and Time

TNT MODEL

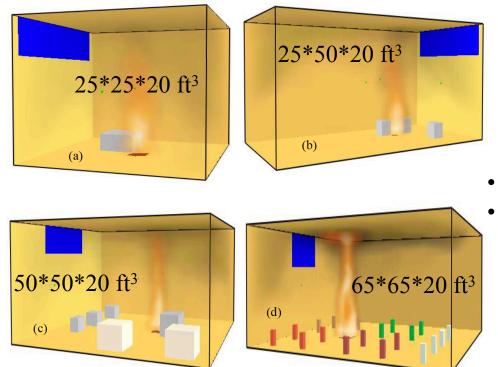
TOLUENE					
Heat of Combustion (MJ/kg)	42.54				
Specific heat (kJ/kg/K)	2.02				
Latent heat (kJ/kg)	351				
Boiling temperature (K)	383.8				
Ambient temperature (K)	293				
Heat of Combustion TNT (MJ/kg)	4.68				
Mass of fuel released (kg)	100				

Flash fraction, $F = 1 - exp \left[\frac{C_P \Delta T}{L} \right] = 1 - exp \left[\frac{C_P \Delta T}{L} \right]$	$2.02 \frac{\text{kJ}}{\text{kg. K}} \times (298.15 - 383.8)$	- 0.41
$Fush fraction, F = 1 - exp\left[\frac{1}{L}\right] - 1 - exp$	351	- 0.41

Weight of fuel released, $W_f = 2 \times 0.41 \times 100 = 81.4$ kg of Toluene

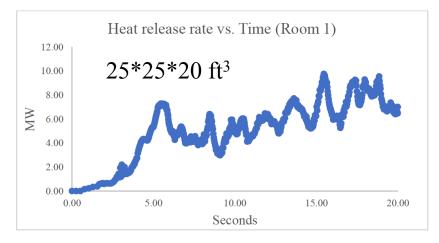
TNT equivalent weight,
$$W_{\text{TNT}} = \alpha_e \frac{W_f H_f}{H_{\text{TNT}}} = 0.03 \times \frac{81.4 \text{ kg} \times 42.54 \text{ MJ/kg}}{4.68 \text{MJ/kg}} = 22.2 \text{ kg}$$

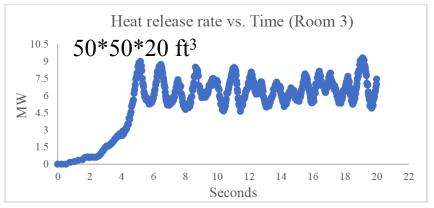
where,
$$C_p = Specific heat \left(\frac{kJ}{kg.k}\right)$$
; $L = Latent heat \left(\frac{kJ}{kg}\right)$; $\alpha_e = Efficiency factor$

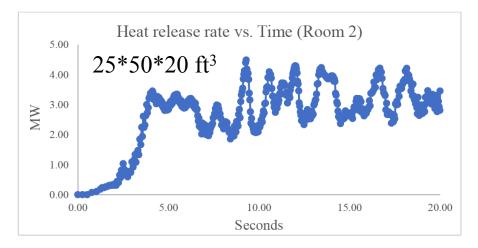

$$H_{TNT} = TNT$$
 heat of detonation $\left(\frac{MJ}{kg}\right)$; $H_f = Heat of combustion \left(\frac{MJ}{kg}\right)$

Scaled distance, $R' = \frac{R}{W_{TNT}^{1/3}}$; where, $R = actual \ distance \ from \ explosion$

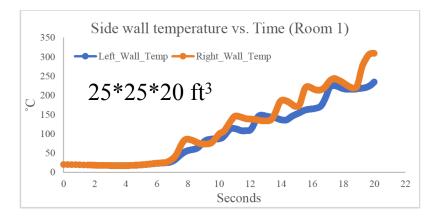
Distance from charge (m)	Distance from charge (ft)	Scaled distance from charge (m/kg ^{1/3})	Side-on peak overpressure (kPa)
3	10	1.07	1215.9
6	20	2.13	253.3
8	26	2.85	101.3
15	49	5.34	40.5
30	98	10.67	15.2
60	197	21.35	5.1

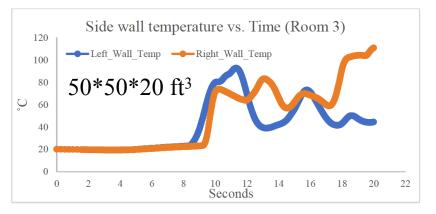

FIRE SIMULATIONS BY FDS

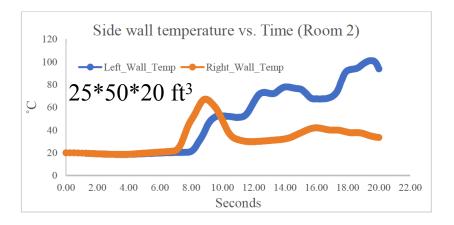



- Temperature Range: 20°C to 1200 °C
- Lethal Temperature: 5 sec to 12 sec

FIRE SIMULATIONS BY FDS

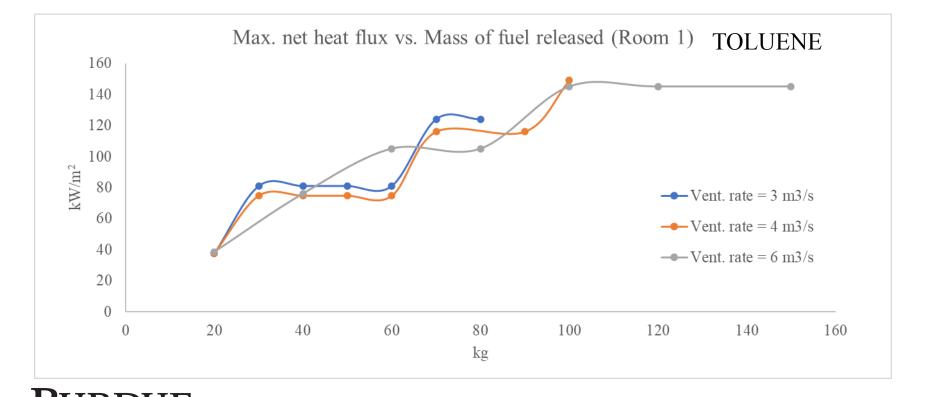




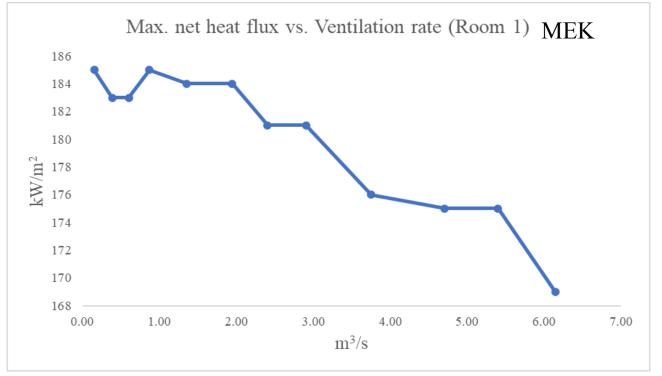


- Heat Release Rate (General): Room3 > Room1 > Room2
- Within a certain range of room size, heat release rate increases as the size decreases.
- Out of the range of room size, longer fire duration and higher heat release rate may occur due to more oxygen in the room.

FIRE SIMULATIONS BY FDS

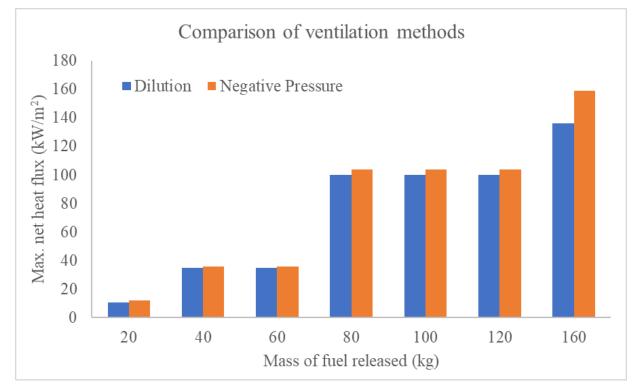


- Max. Side Wall Temperature: Room3 > Room1 > Room2
- Within a certain range of room size, side wall temperature increases as the size decreases.
- Out of the range of room size, higher side wall temperature may occur due to longer fire duration.


EFFECT OF VENTILATION

UNI

VERSITY



EFFECT OF VENTILATION

EFFECT OF VENTILATION

EXPLOSION AND TOXIC RELEASE MODEL

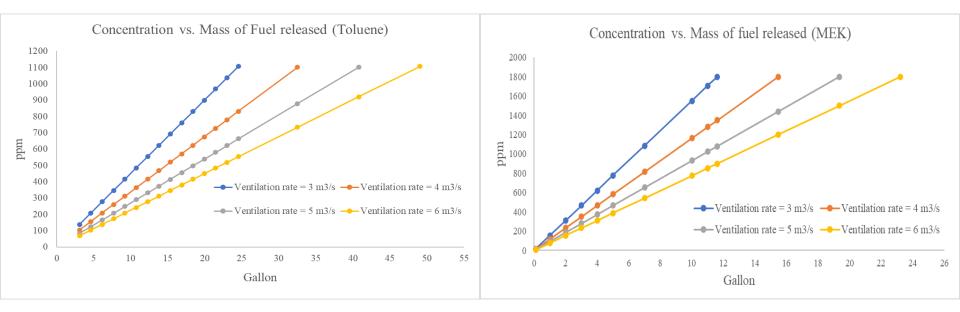
TOLUENE						
Mass of Fuel released	M (kg)	39.80				
Ambient Temperature	T (K)	298				
Non-ideal Mixing Factor	k	0.1				
Area of Ventilation	$A_v(m^2)$	10				
Control velocity	u (m/s)	0.6				
Liquid Pool Thickness	(m)	0.05				
Absolute Pressure	P (atm)	1				
Liquid Temperature	$T_{L}(K)$	298				
Evaporation Rate	Q _m (g/min)	37.35				
Mass Transfer Coeff. For Area A	K (m/s)	0.0048				
Area of Pool	$A(m^2)$	0.92				
Saturation Vapor Pressure	P ^{sat} (atm)	0.037				
Gas constant	$R_g (m^3 atm mol^1 K^{-1})$	0.00008205				
Molecular Weight	MW	92.14				
Density	kg/m ³	862				
Ventilation Rate	$Q_v (m^3/s)$	6				
STEL	(ppm)	150				
Lower Explosive Limit	LEL (ppm)	1100				
Upper Explosive Limit	UEL (ppm)	7100				
25% LEL	(ppm)	275				
Permissible Exposure Limit	PEL (ppm)	200				
TLV-TWA	(ppm)	20				
IDLH	(ppm)	500				
Concentration	C (ppm)	275.33				

UNIVERSITY

INSTRUCTIONS

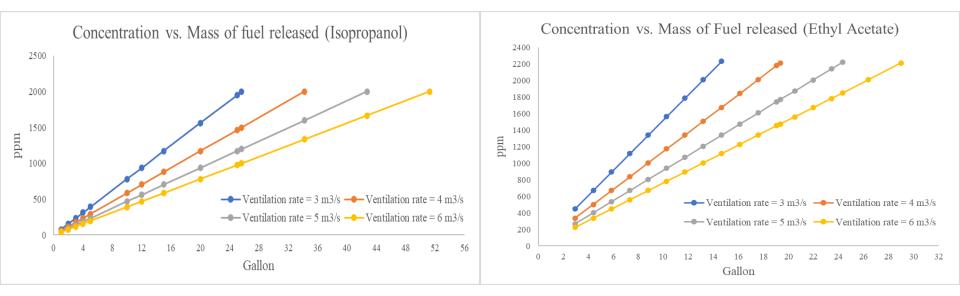
Only parameters that can be changed are: Mass of Fuel released Ambient Temperature Non-ideal Mixing Factor Area of Ventilation Control velocity Liquid Pool Thickness Absolute Pressure Liquid Temperature

1) Enter value of Mass of Fuel released in kg and Ambient Temperature in K. 2) Enter value of Non-ideal Mixing Factor. The value ranges from 0.1-0.5. Use 0.1 for worst case scenario and 0.125 for average mixing. 3) Enter Area of Ventilation in m^2 , according to the vent size (length x width). 4) Enter value of Control velocity in m/s. Generally used values are in the range 0.4-0.6 m/s. 5) Enter value of LiquidPool Thickness in m. 6) Enter Liquid Temperature in K and Absolute Pressure in atm. 6) See calculated value of *Concentration*, to compare with explosive limits and occupational exposure limits. 7) Value of *Concentration* in red indicates presence of explosive concentration.

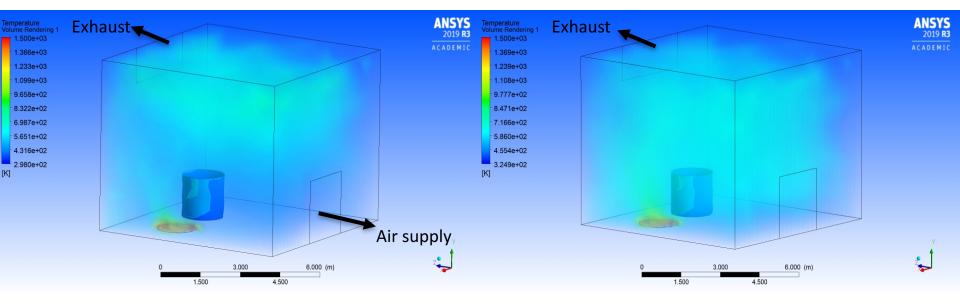

EXPLOSION AND TOXIC RELEASE MODEL

• Quantity of spill resulting in 25% LEL concentration

	Mass of fuel released (gallons)						
Chemical	Ventilation rate = 3 m ³ /s	Ventilation rate = 4 m ³ /s	Ventilation rate = 5 m ³ /s	Ventilation rate = 6 m ³ /s			
Toluene	6.1	8.1	10.1	12.2			
MEK	2.9	3.86	4.83	5.8			
Isopropanol	6.4	8.5	10.6	12.8			
Ethyl Acetate	3.6	4.8	6.03	7.2			

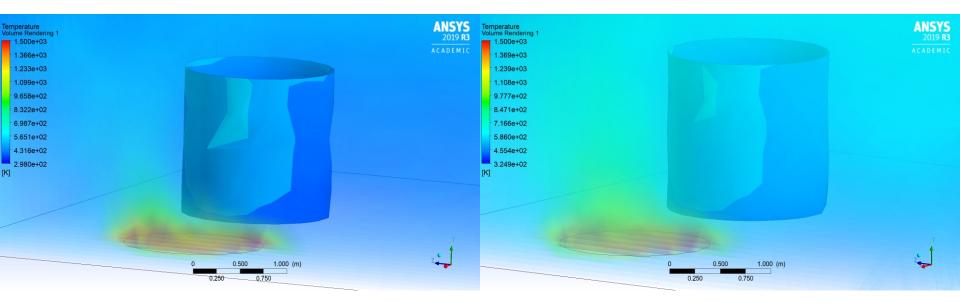


CONCENTRATION VS. MASS OF FUEL RELEASED



CONCENTRATION VS. MASS OF FUEL RELEASED

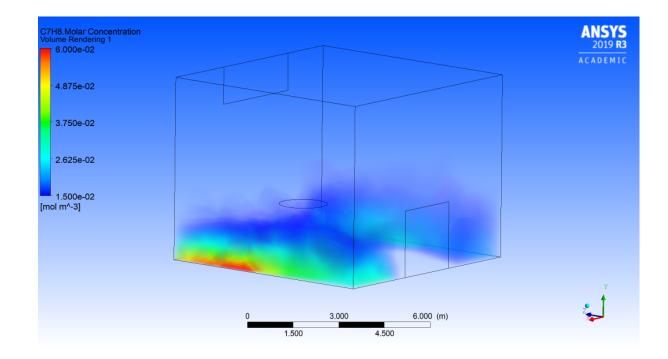
CFD MODEL FOR FIRE



Dilution ventilation

Negative pressure ventilation

CFD MODEL FOR FIRE



Dilution ventilation

Negative pressure ventilation

CFD MODEL FOR TOXIC RELEASE

SUMMARY

CONCLUSION

- Consequence-based assessment is essential to understand potential accidents and to identify its severity.
- Adequate control measures can be installed.
- Quantitative risk assessments are crucial.
- Inherently safer designs can reduce chance of accidents.
- Follow Recognized and Generally Accepted Good Engineering Practices (RAGAGEP)
- Prevention is always better than mitigation.

THANK YOU

