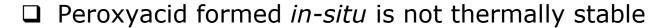


Outline



- Background
- □ Energy balance
- ☐ Thermal hazard assessment
- ☐ Kinetic model to fit the heat of reaction (Qr) data
- ☐ *In-Silico* Evaluation of Heat accumulation
- Worst case scenario

Project Background

- What does JM do.....
- Oxidation reactions with hydrogen peroxide in C Compound C Compou

- Control of the exotherm at production is important for safety and quality
- Understanding the total heat of reaction, the rate of heat generation and the rate of heat removal to achieve the energy balance on large reactors

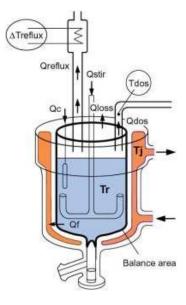
Control of heat accumulation and deviation of temperature during processing

Energy Balance

- \Box The total heat of reaction ΔH_r
 - Heat from individual reaction step, heat from mixing, dissolution, and phase change (evaporation, crystallization)
- In a jacket reactor,

$$Q_r = Q_{flow} + Q_{stir} + Q_{acc} + Q_{dos} + Q_{loss} + Q_{reflux}$$

Integration of the heat flow of reaction Qr over time


$$\Delta H_r = \int Q_r \cdot dt$$

 \Box The heat flowing thru the jacket wall Q_{flow} can be determined by:

$$Q_{flow} = U \times A \times (T_r - T_j)$$

 $U = \text{Heat transfer coefficient, W/(m}^2 \cdot \text{K})$

A = the wetted inner surface area of the reactor, m^2

Energy Balance

 \Box In a batch process, the total heat of reaction can be simplified without the term of Q_{stir} , Q_{loss} and Q_{reflux} :

$$Q_r = Q_{flow} + Q_{acc}$$

□ In a semi-batch process, the total heat of reaction can be simplified as:

$$Q_r = Q_{flow} + Q_{acc} + Q_{dos}$$

$$UA\left(T_{r}-T_{j}\right)+M_{r}\times C_{p,r}\times \left(\frac{dT}{dt}\right)+M_{d}\times C_{p,d}\times \left(T_{r}-T_{d}\right)$$

Heat Exchange Rate

- ☐ The heat exchange rate of a large scale jacket reactor is expressed by the heat transfer coefficient, U, in W/m²·K,
- The overall heat transfer coefficient is the sum of 6 separate heat transfer coefficients:

$$\frac{1}{U} = \frac{1}{h_{i}} + \frac{1}{h_{if}} + \frac{1}{h_{l}} + \frac{1}{h_{w}} + \frac{1}{h_{of}} + \frac{1}{h_{o}}$$

in which:

h_i Inside (process) film coefficient

h_{if} Inside (process) fouling factor

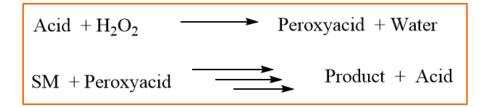
h_I Lining coefficient

h_w Wall coefficient

 ${\sf h_{of}}$ Outside (service) fouling factor

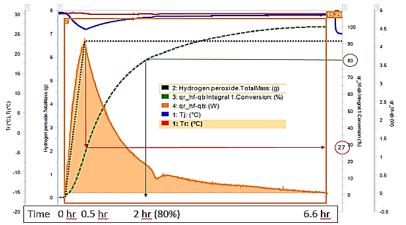
h₀ Outside (service) film coefficient

- ☐ U can be obtained from the regression of heating/cooling data with known A, or from DynoChem Estimate UA Utility based on the dimensions of the reactor, agitator and volume.
- Dynochem_UA Utility estimates a U value of 239 W/m²K for reactor R1, comparing to the value 270 W/m²K by regression of data from a heat-cool cycle


Risk Assessment of Thermal Hazard


- Consequences of loss control of process temperature (thermal runaway) and associated potential for gas evolution (over-pressurized reactors)
- Evaluations of both the desired reactions and possible secondary decomposition reactions
 - EasyMax, RC1 desired reactions
- DSC, TSu, ARC, etc. secondary decomposition reactions Temperature ΔT_{ad} Secondary Reaction Main Reaction **MTSR** TMRad Acid $+ H_2O_2$ Peroxyacid + Water ΔT_{ad} (2) Product + Acid SM + Peroxyacid Cooling Failure Normal Time Process

Risk Assessment of Thermal Hazard


- EasyMax with the heat flow calibration option from Mettler Toledo
- Controlled addition of peroxide into the solution of SM in Acid
- Multi-step reaction

In the lab, the conversion of heat at the end of peroxide addition is near 30 % at

30°C

70% accumulation

☐ Risks associated with a semi-batch process of an exothermic reaction

Modeling Qr

- ☐ Reaction kinetics is scale-independent
- ☐ Qr is a way to measure kinetics
- ☐ Feed rate, heat transfer, etc. are *scale-dependent*

$$rate = k [Acid] \times [H_2O_2]$$

$$Acid + H_2O_2 \longrightarrow Peroxyacid + H_2O$$

$$SM + Peroxyacid \longrightarrow Product + Acid$$

$$Qr = (\sum_{i} r_{i}(-\Delta Hr_{i}))V = Q_{flow} + Q_{acc} + Q_{dos}$$

Kinetic model from Qr

Predict temperature profile, accumulation of heat and heat effects on compositions as a function of operation conditions and reactor configurations

DC Model to Fit Q_r

Acid +
$$H_2O_2$$
 Peroxyacid + H_2O

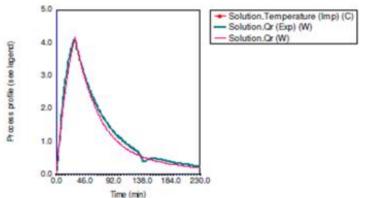
SM + Peroxyacid Product + Acid

$$Qr = (\sum_{i} r_i(-\Delta H r_i))V$$

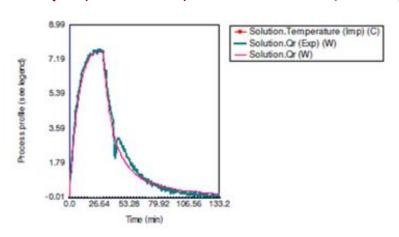
Assuming the two most exothermic steps to fit the Q_r

Acid +
$$H_2O_2$$
 \longrightarrow Peroxyacid + H_2O Simplified fit-
for-purpose
SM + Peroxyacid \longrightarrow Epoxide + Acid model

 $Qr = (k_1[Acid][H2O2](-\Delta Hr_1) + k_2[SM][Peroxyacid](-\Delta Hr_2))V$


DC Qr Model with Fixed Feed

- A 2-line Dynochem model can fit >95% of the data points from EasyMax experiments
- ☐ The dip of the Q_r curve (endothermic event or side reactions) after the addition of peroxide is real, but **not** included in the simplified model


Acid +
$$H_2O_2$$
 \longrightarrow Peroxyacid + H_2O (1)

	k (L/mole-s)	E _a (kJ/mole)	ΔH (kJ/mole)
Rxn 1	4.23E-05	58.58	-115.13
Rxn 2	2,20E-04	53,85	-250.40

Qr run 1 (30C, 30 min feed, 1.18 mol Peroxide /mol SM)

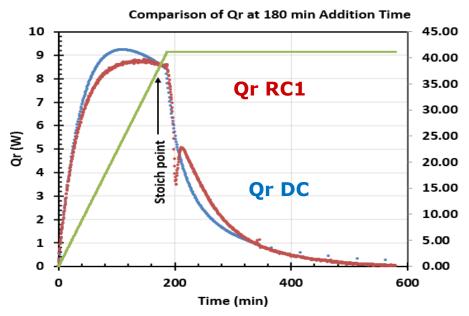
Qr run 2 (50C, 30 min feed, 1.21 mol Peroxide /mol SM)

Model for Heat Accumulation

□ DC multiline heat accumulation model to calculate the heat accumulation for multi-line reactions

Acid +
$$H_2O_2$$
 \longrightarrow Peroxyacid + H_2O (1)

- □ Dosing excess amount of peroxide, the max accumulation is at the stoichiometry point, where the number of moles of peroxide equals to the number of moles of SM at start
- \Box Accumulation model runs twice 1st run to get the total ΔH , 2nd run to calculate the accumulation
- ☐ The accumulation can be varied with the feed rate and the temperature
- The worst case scenario for the semi-batch process is the loss of process control at the max level of accumulation



Verification of Heat Accumulation Model on RC1

■ Executing reactions on RC1

☐ Imposing Tr data from RC1 into the accumulation model to calculate

the max accumulation - 30 °C and 180 min

	Max accumulation from model	Max accumulation from RC1
30 °C and 180 min	38%	37%

Mettler RC1

Optimization in Dynochem

DynoChem tools

Selected task

Multiple factors and levels

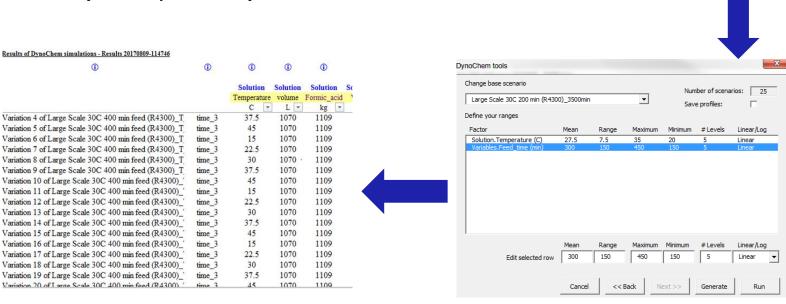
Solution. Temperature (C) Solution. volume (L)

Solution.Formic acid (kg)

Solution.Peroxide (mol)

Feed vessel.volume (L)
Feed vessel.Temperature (C)
Feed vessel.Peroxide (mol)
Feed vessel.Water (kg)

Variables.Time_A (min) Jacket.sUA (W/L K)


Solution.Water (kg) Solution.TB (mol)

Large Scale 30C 200 min (R4300)_3500min

Select base scenario

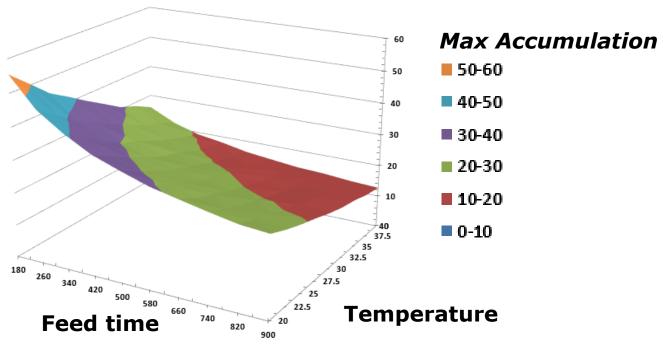
Potential factors

- ☐ Heat accumulation model can provide the max accumulation in good agreement with reality.
- ☐ Simulate the process on the model for a range of temperature and feed time
- □ Large reactor R1, assuming Tj min = 0 C, and slow response of jacket temperature controller (low Kp value) in the model

23

Selected factors

<u>A</u>dd >


<u>D</u>elete

Solution.Temperature (C)

Variables.Feed_time (min)

Optimization in Dynochem

- □ 3-D surface plot of max accumulation vs feed time and solution temperature (starting temperature)
- Assuming continuous feed of peroxide
- ☐ Faster feed of peroxide below 25 °C will cause higher accumulation >25%
- Optimize feed time and temperature based on accumulation
- Examine each scenario to avoid max solution temperature > 35 °C (current max allowable process temperature)

Assessment of Thermal Hazard

- 100% accumulation of peroxide, adiabatic conditions
- ☐ Peroxide or peroxyacid undergoes thermal decomposition

HCOOOH
$$\longrightarrow$$
 CO₂ + H₂O
HCOOOH \longrightarrow HCOOH + 1/2 O₂
H₂O₂ \longrightarrow H₂O + 1/2 O₂

- ☐ Create a combustible environment and pressurize the reactor
- ☐ The maximum temperature and pressure under the worst case scenario, adiabatic 100% accumulation

Heat Balance in Adiabatic Condition

■ Heat balance of exothermic reaction

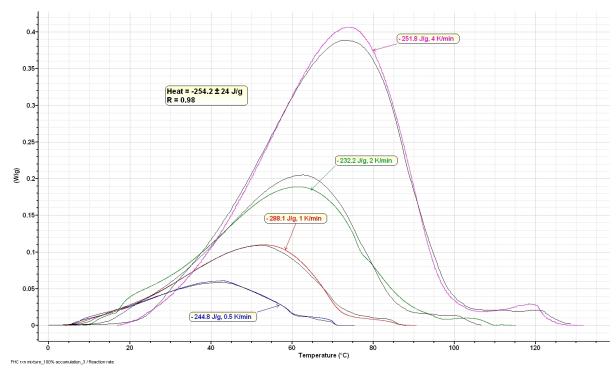
$$UA(T_j - T_r) + M_s(-\Delta H_r) \frac{d\alpha}{dt} = M_s \times C_{p,s} \times \frac{dT}{dt} + M_c \times C_{p,c} \times \frac{dT}{dt}$$

$$\frac{d\alpha}{dt} = A \times \exp(\frac{-E_a}{RT}) \qquad \text{Reaction rate}$$

 \Box In full adiabatic conditions, U=0

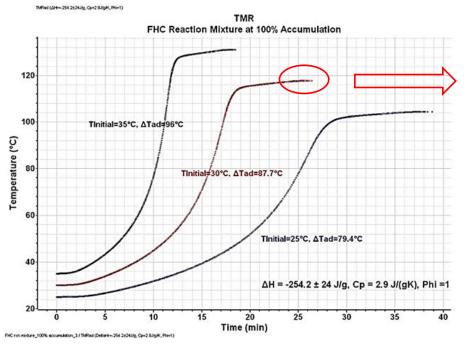
$$\frac{dT}{dt} = \frac{1}{\emptyset} \left(\frac{-\Delta H_r}{C_{p,s}} \right) \frac{d\alpha}{dt}$$

$$\emptyset = \frac{M_s \times C_{p,s} + M_c \times C_{p,c}}{M_s \times C_{p,s}}$$


- \square For batch reactors > 1 m³, ϕ is approaching 1
- \Box $T = f(t, kinetics, \Delta H_r, C_{p,s})$

Thermal Kinetic Model of Reaction Mixture

- Using DSC data from small scale 100% accumulation experiments at different ramp rates
- □ AKTS thermal kinetic model Isoconversional approach to perform numerical data analysis of kinetic experiments
- Apparent kinetic parameters without knowing detailed steps of thermal decomposition (model free)



TMR_{ad} of Reaction Mixture

- ☐ TMR_{ad}: Time-to-Maximum rate (TMR) under adiabatic conditions
- TMR_{ad} at **100% accumulation** from 30 °C is 25 min to reach the max temperature of 118°C

Calculated MTSR from calorimetry data:

MTSR (°C)	ΔT adiabatic (K)	Accumulation (%)
120	90	100
102	72	80
84	54	60
75	45	50
70	40	40
57	27	30
48	18	20

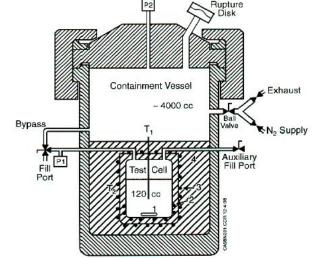
TMR_{ad} of Reaction Mixture

- ☐ TMR_{ad}: Time-to-Maximum rate (TMR) under adiabatic conditions
- TMR_{ad} at 40% accumulation from 30 °C is 80 min to reach the max temperature of 65°C

Calculated MTSR from calorimetry data:

1		FHC Reaction Mi	TMR xture at 40% Acc	umulation		
5-		The state of the s		ΔH = -101.7 ± 10 、	J/g, Cp = 2.9 J/(g	K), Ph
0		Tinitial=35°C, Δ1	ad=38.5°C			
5-					\ 	>
0						
5-	/	Tinitial=30	0°C, ΔTad=35.1°C		X00000 000000 000000000000000000000000	
o]		,	Marie a a fine of the state of			
5		2002 0000 00000000000000000000000000000	TInitial=25°C, ΔΊ	Гad=31.7°С		
0		and the state of t				
	and the second					
5						
0	20	40	60 Time (min)	80 1	00 1:	20

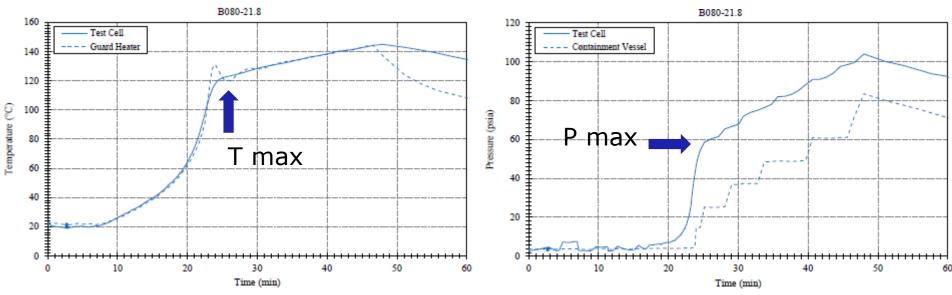
MTSR (°C)	Δ T adiabatic (K)	Accumulation (%)
120	90	100
102	72	80
84	54	60
75	45	50
70	40	40
57	27	30
48	18	20


Process Vessel Characterization

Vessel R1	
Vessel MAWP (design Pressure)	100 psig
Vessel Volume When Empty	1013 gallons
Reactant Volume	600 gallons
Reactant Mass	2065 kg
Normal Operating Pressure	< 5 psig
Normal Operating Temperature	30 °C
Relief Device Set Pressure (65 psig

VSP2 Testing of Reaction Mixture

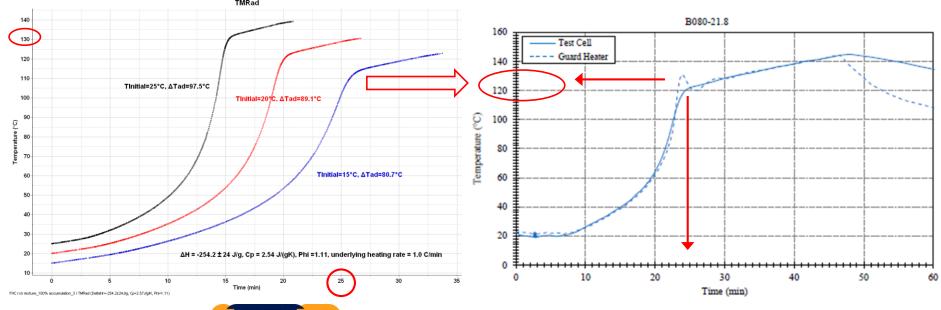
- ☐ The max pressure potential of the reaction mixture under adiabatic conditions in worst case scenario (100 % accumulation) is important for the pressure rating of vessel.
- ☐ The VSP2TM apparatus, based on DIERS (Design Institute for Emergency Relief Systems) research results, is designed to acquire data related to vent sizing.
- ☐ Hastelloy C test cell with an auxiliary heat to bring the testing mixture to the temperature.
- Hydrogen peroxide is added at once.
- □ A guard heater outside the test cell to maintain the same temperature as the inside sample temperature.
- Adiabatic conditions.



FAUSKE

VSP2 Testing of Reaction Mixture

- ☐ 100% accumulation of peroxide
- Background heating rate ~ 1.0 °C/min
- ☐ The max temperature is approx. 125 °C, where the max pressure is approx. 58 psig
- ☐ The time to reach the max temperature and pressure is 25 min



TMR_{ad} of Reaction Mixture

- TMR_{ad} from VSP2 at **100% accumulation** from 20 °C is 25 min to reach the max temperature of 125°C
- TMR_{ad} from AKTS at **100% accumulation** from 20 °C is 27 min to reach the max temperature of 130°C

Time to max temperature from AKTS

Time to max temperature from VSP2 model: testing: TMRad

VSP2 Testing of Reaction Mixture

- □ The max pressure caused by the exothermic event at 100% accumulation is 58 psig
- ☐ At the worst case scenario, pressure generated from the exothermic reaction is **not** expected to challenge the pressure rating of vessel

Process vessel characterization:

Vessel R4300	
Vessel MAWP (design Pressure)	100 psig
Vessel Volume When Empty	1013 gallons
Reactant Volume	600 gallons
Reactant Mass	2065 kg
Normal Operating Pressure	< 5 psig
Normal Operating Temperature	30 C
Relief Device Set Pressure	65 psig

Summary

- A Dynochem kinetic model is able to fit > 90% of the calorimetry data (Qr) from Easymax.
- The heat accumulation model is verified with the experimental data from RC1.
- □ Dynochem_UA Utility estimates a U value of 239 W/m²K for reactor R1. It is conservative comparing to the value 270 W/m²K in report by Hargrove by regression of data from a heat-cool cycle.
- In-silico evaluation of the process conditions, equipment and control on the heat accumulation model with a range of feed time and temperature.
- ☐ Small scale dynamic DSC data and thermal kinetic model to predict the max temperature and time-to-maximum rate (TMR), and it matches the measured value from VSP2 testing.
- Empirical and computational approach Safety-by-Design

Acknowledgement

JM-

- Richard Fornicola
- Ewart Grant
- Saroop Matharu
- Michael Hamlin
- Stephen Hannon
- Mark Trampe

DC Support Team

