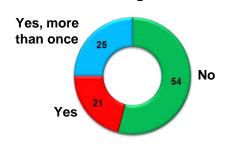
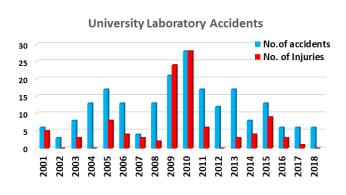
The use of Quantum Mechanical Calculations in Thermal Hazard Assessment

Fareed Bhasha Sayyed Synthetic Molecule Design & Development Eli Lilly India Services Pvt Ltd

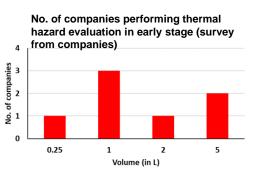
Purdue Process Safety and Assurance (P2SAC) Center 7-Dec-2021



Importance of Safety Assessment


Do we need early phase safety assessment?

- Materials/reactions carried out at small scale
- A close comparison with university labs gives an idea why safety is important?


Have you ever sustained an injury of any kind in a laboratory setting while conducting research?

Nature 493, 2013, 9-10.

J. Loss Prev. Process Ind, 74 (2022) 104671.

Org. Process Res. Dev. 2020, 24, 2529

Safety incidents occur irrespective of scale, its all about "people"

Early Phase Hazard Screening

Desk screening

- Literature search
- Oxygen Balance
- O.R.E.O.S.
- CHETAH
- Computational Modelling

Org. Process Res. Dev. 2021, 25, 2, 212

Experimental Techniques

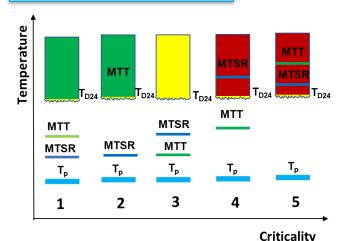
- DSC
- C80
- ARC
- TSU
- Microcal

Org. Process Res. Dev. 2002, 6, 933

Limitations for Experiments in Early Phase

- Material availability
- Unknown hazards associated with new raw materials/Intermediates
- Onset temperature variation with respect to experimental technique
- Time factor
- Undesired reactions

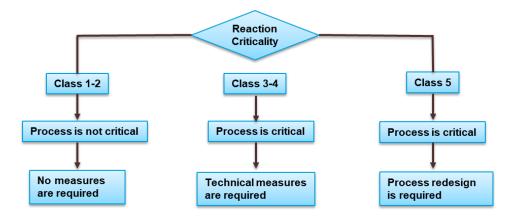
Measured decomposition onset temperature (°C)


	DSC	C80	ARC	TSU1
Typical sample size	10 mg	50m g	5 g	1-2 g
4-nitrophenyl hydrazine	160	120	106	138
2,6-dichloro-4-nitroaniline	290	250	286	300
4-amino-1,2,4-triazole	260	200	190	240
5-nitro-1H-indazole	300	290	292	300
3-methyl-4-nitrophenol	247	188	181	240
di-tert-butyl peroxide	164	120	116	160

Org. Process Res. Dev. 2002, 6, 933

We encourage a strong safety conscious work environment by the use of computational modelling for thermal hazards as a starting point

Chemical Reaction Safety


Stoessel's Criticality Class

$$\Delta T_{ad} = \frac{Q_r}{c_p' \times m} = \frac{CA_0 \times (-\Delta H_r)}{c_p' \times \rho}$$

$$T_{\rm D24} = 0.7 \times T_{\rm init} - 46$$

- T_p: Process temperature under desired conditions.
- ΔT_{ad}: Temperature increase due to cooling failure.
- MTSR: The highest temperature that can be reached in case of cooling failure;
- MTSR = $T_p + \Delta T_{ad}$.
- MTT: the highest temperature allowed by the system. If the reactor is operated at atmospheric pressure, MTT coincides with the boiling point of the solvent.
- T_{D24}: Temperature at which the time to maximum rate is 24 h.

Stoessel, F. Basel, CH, WILEY-VCH VerlagGmbH & Co. KGaA, 2008

Heat of Reaction (ΔH_r) Predictions

Group Contribution Methods

Advantages

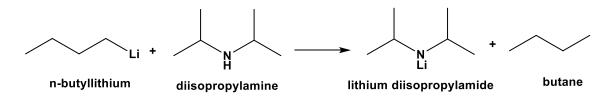
- Simple and easy to use
- Works well for hydrocarbons
- Less time-consuming

Limitations

- Isomerization effects
- Non-covalent interactions
- Salt formation predictions
- Solvation effects etc

Quantum Mechanical Methods

Advantages

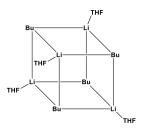

- Electronic structure based calculation
- Stereoelectronic effects
- Accurate solvation modelling
- Non-covalent interactions

Limitations

- Time-consuming calculations
- Well defined structure is required

Importance of Explicit Solvation: LDA

Without explicit Solvation



Predicted $\Delta H_r = -96.1 \text{ kJ/mol}$

Measured $\Delta H_r = -146.1 \text{ kJ/mol}$

Thermochim. Acta 1995, 255, 9

QM calculations predicted 34.2% error without consideration of explicit solvation

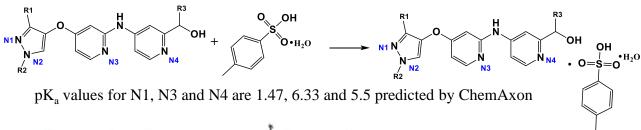
solution structure of n-BuLi in THF *Org. Lett.* **2017,** *19*, 3966

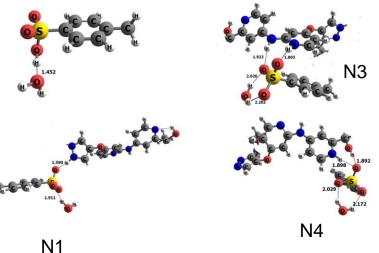
Calculations underestimate heat of reaction if structural information is not correct

Importance of Explicit Solvation: LDA

Predicted $\Delta H_r = -149.2 \text{ kJ/mol}$

Measured $\Delta H_r = -146.1 \text{ kJ/mol}$


QM calculations predicted accurate ΔH_r with explicit solvation

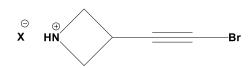

Explicit solvation predicted ΔH_r accurately; So input structure is very important for calculations

J. Am. Chem. Soc. 2015, 137, 6292

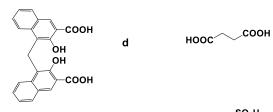
Predicting ΔH_r for a salt formation

Importance of water and site of salt formation

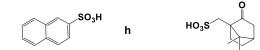
Predicted ΔH_r with and without hydration


Protonation site	∆H _r (TsOH)	∆H _r (TsOH•H ₂ O)
N1	-70.9	-49.5
N3	-93.8	-67.9
N4	-96.2	-70.9

Measured ΔH_r -69.9 kJ/mol of TsOH•H₂O

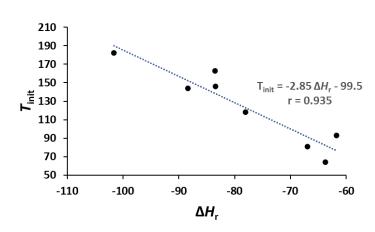

Calculations overestimates ΔH_r if structural information is not correct

$\Delta H_{\rm r}$ to predict thermal stability of salts


Azetidine Salts

a H-CI h H-OOCPh

HBF₄ f



Org. Process Res. Dev. 2018, 22, 1409

Decomposition temperature Tinit

Counterion	Measured T _{init} (°C) ^a	Predicted ΔH _r (kJ/mo l)
а	93	-61.7
b	64	-63.7
С	118	-78.0
d	81	-66.9
е	163	-83.5
f	144	-88.4
g	146	-83.5
h	182	-101.7

Correlation between ΔH_r and T_{init}

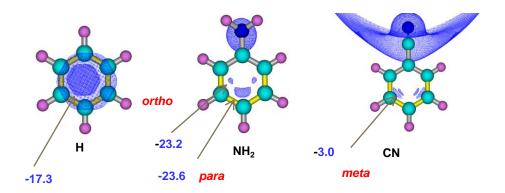
 $\Delta H_{\rm r}$ can be used as a tool for high hazardous salt screening

Molecular Electrostatic Potential (MESP) Topography

Substituent Effect

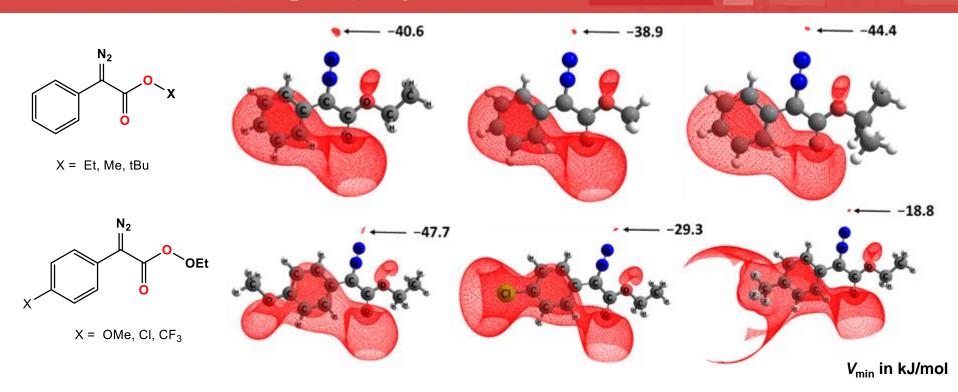
Hammett Equation,
$$\log (k_x) = \rho \sigma + \log (k_H)$$

 σ = Substituent constant

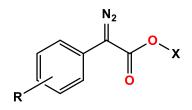

 ρ = Reaction constant

$$pK_a = 4.76$$
 $pK_a = 1.68$ $pK_a = 2.66$

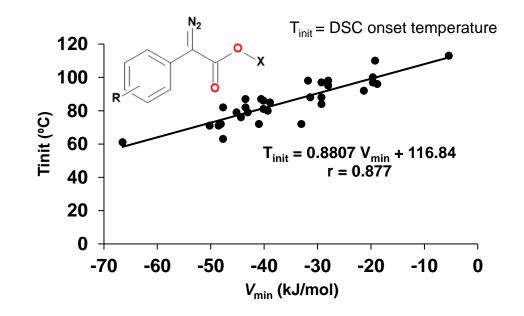
MESP topography


$$V(\mathbf{r}) = \sum_{A=1}^{N} \frac{Z_A}{|\mathbf{r} - \mathbf{R_A}|} - \int \frac{\rho(\mathbf{r}')d^3\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$

 $V_{min} = MESP minimum$



substituent effect is reflected in V_{\min} descriptor

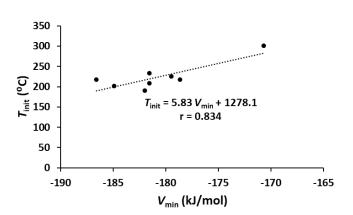

MESP topography of Diazo Compounds

Correlation between T_{init} and V_{min}

X (R=H)	R (X = OEt)	R (X = OEt)	R (X = OEt)	R (X = OEt)
Ме	4-OMe	3- CF ₃	3-Me	3-OMe
Et	4-Me	2-OMe	3-F	4-NO ₂
tBu	4-F	2-F	3-Cl	3,4-Me
CH ₂ Cl ₃	4-Cl	2-Cl	3,4-OMe	4-Ph
	4-Br	2-CF ₃	3,4,5-OMe	4-OPh
	4- CF ₃	3,4-Cl	4-OPh	

 V_{\min} provides an easy estimate of decomposition temperature for diazo compounds

Org. Process Res. Dev. 2020, 24, 67


Thermal stability of Nitroalkanes

Nitro methane

 T_{init} (°C)^a Nitro alkane V_{min} (kJ/mol) -170.7301 -179.5225 -182.0191 -181.6 233 -181.6208 -178.7218 -184.9202 -186.6217

Nitro ethane

Nitro propane

 V_{\min} provides an easy estimate of decomposition temperature for Nitroalkanes

Org. Process Res. Dev. 2021, 25, 781

Summary

- QM calculations provide accurate early phase thermal hazard risk assessment.
- Role of reagents and solvent is important for accurate predictions.
- ΔH_r can be used as a tool to predict thermal stability of salts.
- Structure-stability relationships can be derived using MESP descriptor.

We thank leadership of Synthetic Molecules Design and Development (SMDD) at Eli Lilly and Company for support of this work

Questions?

Thank you for your Attention!!