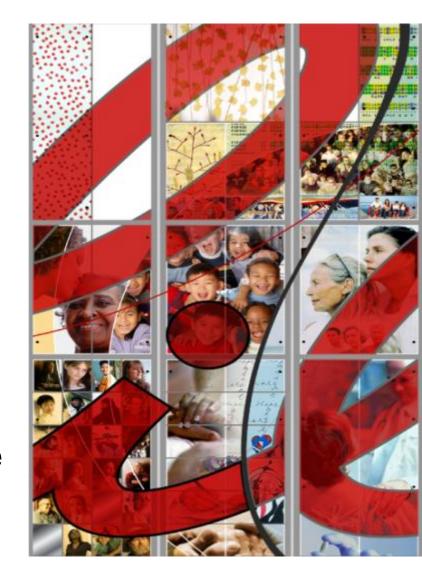
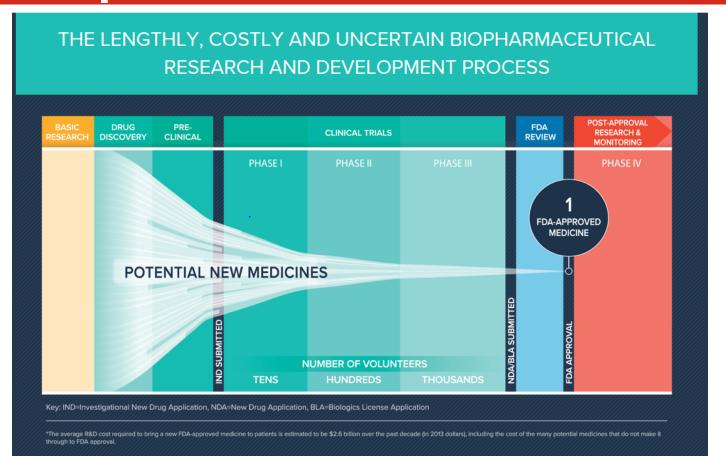
Eli Lilly's Approach to Early Phase Chemical Reactivity Hazard Assesments

Purdue Process Safety & Assurance Center Spring Meeting 10-MAY-2018

Stanley P. Kolis, Ph.D.

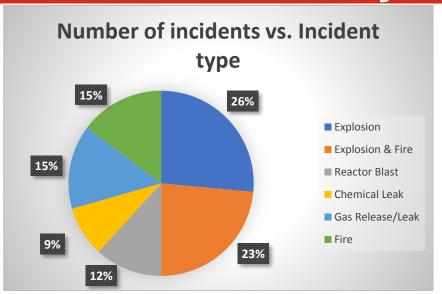

Research Advisor – Small Molecule Design and Development

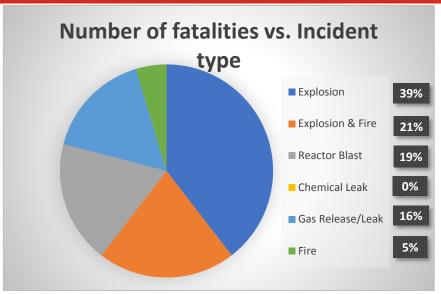
Eli Lilly and Company

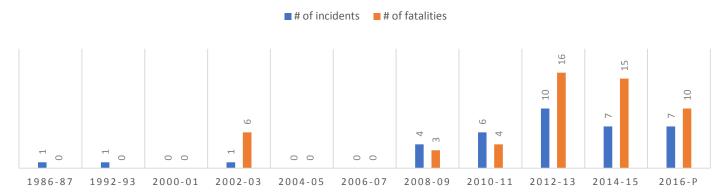

Indianapolis, IN 46285

Our Fundamentals

- Our Mission: We make medicines that help people live longer, healthier, more active lives.
- Our Vision: We will make a significant contribution to humanity by improving global health in the 21st century.
- Our Values: Integrity,
 excellence, respect for people

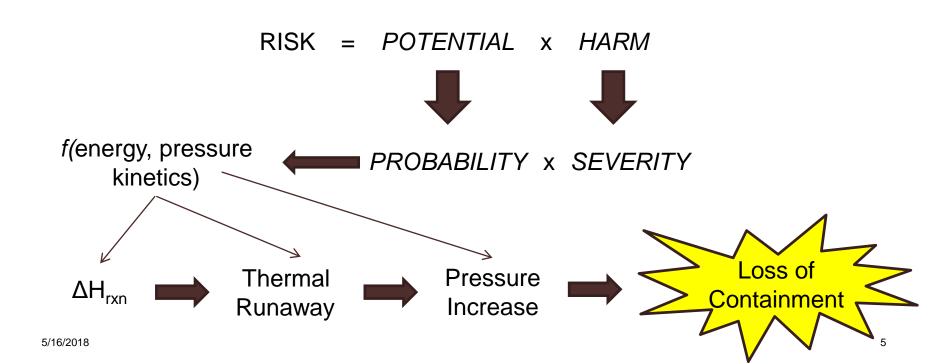



The Biopharmaceutical Research & Development Process


On average it takes 10 to 15 years for a medicine to make its way through the entire R&D process to approval by the U.S. Food and Drug Administration (FDA).

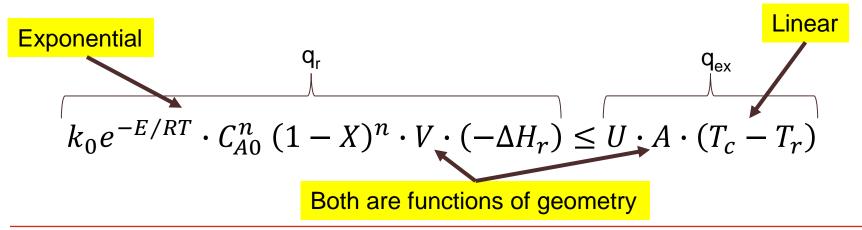
Process Safety Incidents in the Pharma Industry

FATALITIES & INCIDENTS VS. YEAR



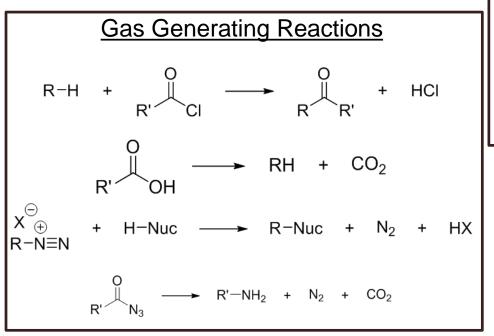
Professor Ray Mentzer, Purdue Process Safety and Assurance Center (P2SAC)

Risks


 "A situation that has the <u>potential</u> to cause <u>harm</u> to human, environment, and property"

-European Federation of Chemical Engineering -Stoessel, F. (2008). Thermal Safety of Chemical Processes.

The concept of Reaction Scale as a Surrogate for Risk Likelihood


Heat Balance for a Batch Reactor

Scale	Reactor Volume (m³)	Exchange Area (m²)	Specific Cooling Capacity (W/kg-K)	Typical Cooling Capacity (W/kg)
Research Lab	0.0001	0.01	30	1500
Bench Scale	0.001	0.03	9	450
Pilot Plant	0.1	1	3	150
Production	1	3	0.9	45
Production	10	13.5	0.4	20

Assesment of Reactivity Hazards – High Hazard Reactions

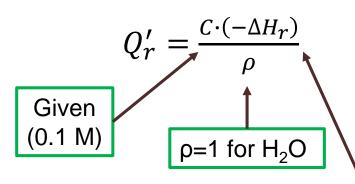
 Check against internal pick list of known high hazard transformations:

The Importance of a Balanced Chemical Equation

Oftentimes, when chemistry comes from the lab, the reaction scheme only focuses on what we 'want' to make:

$$\begin{array}{c|c} O & SOCI_2, DMF \\ \hline & toluene \\ \hline & \Delta \end{array}$$

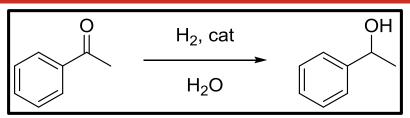
Unbalanced chemical equation can mask certain hazards:


Assessment of Reactivity Hazards with limited Data

"A ketone is to be hydrogenated to the corresponding alcohol in an aqueous solution at a concentration of 0.1 M and a pressure of 2 bar in a reactor protected against overpressure by a safety valve with a set pressure of 3.2 bar."

$$H_2$$
, cat H_2 O

- No thermal data are available
- Assess the severity that <u>thermal</u> risks pose for this reaction.
- What now?


Use of tabulated Data Provides a Good, Quick entry

- 10-fold change in concentration leads to increase of heat release by an order of magnitude!
- If switching to nitro group hydrogenation:
 - 0.1 M sol'n => 56 kJ/kg
 - 1.0 M sol'n => 560 kJ/kg

Reaction	ΔΗ _{rxn} (kJ/mol)
Neutralization (HCI)	-55
Neutralization (H ₂ SO ₄)	-105
Sulfonation	-150
Hydrogenation (alkene)	-200
Hydrogenation (nitro)	-560
Hydrogenation (ketone)	-200
Nitration	-130

More 'Sophisticated' Modeling Approaches

Group Additivity Calcs

$$\Delta H_r = -56 \frac{kJ}{mol}$$

$$Q_r' = \frac{0.1 \frac{mol}{L} \cdot \left(-\left(-56 \frac{kJ}{mol}\right)\right)}{1.00 \frac{kg}{L}} = 5.6 \frac{kJ}{kg}$$

- Benson Group Increment Theory
- Approximations account for atomic, bond and group contributions to ΔH°

Quantum Calcs

$$\Delta H_r = \boxed{-67 \frac{kJ}{mol}}$$

$$Q'_{r} = \frac{0.1 \frac{mol}{L} \cdot \left(-\left(-67 \frac{kJ}{mol}\right)\right)}{1.00 \frac{kg}{L}} = 6.7 \frac{kJ}{kg}$$

- Fundamental electronics calculations.
- Doesn't rely on group energies

Assessment Criteria for Severity of a Runaway

- The severity of a runaway can be evaluated using the temperature levels attained if:
 - the desired reaction and the undesired reaction proceed under adiabatic conditions.

$$\Delta T_{ad} = \frac{(-\Delta H_{rxn}) \times CA_0}{\rho \times c'_p} = \frac{Q'_{rxn}}{c'_p}$$

Assessment Criteria for Runaway Reaction Severity

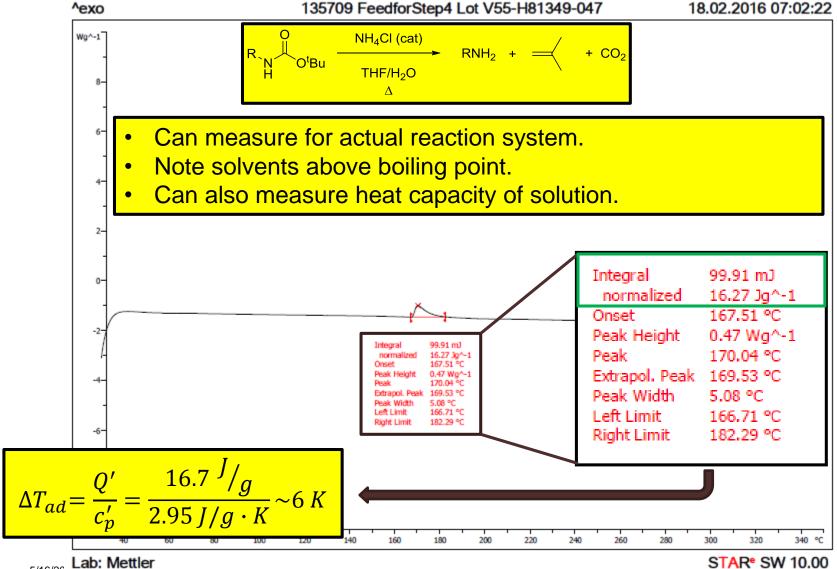
Severity	ΔT _{ad} (K)	Q' (kJ/kg)
High	>200	>400
Medium	50-100	100-400
Low	<50*	<100

^{*} and no pressure increase

Method	Q_r^\prime (kJ/kg)	ΔT_{ad} (K)
Tabular	20	~6
Group Additivity	5.6	~2
Quantum	6.7	~2

CONCENTRATION DEPENDENCE!! 1.0 M => 200 kJ/kg $\Delta T_{ad} \sim 60 K$

Differential Scanning Calorimetry (DSC)

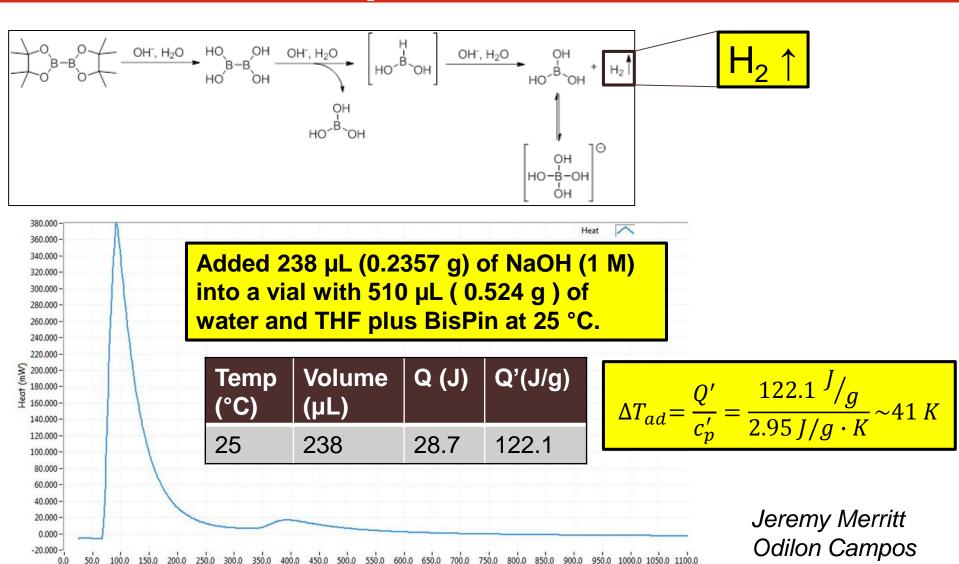


Thermal events are visualized as $T_{\text{sample}} \neq T_{\text{ref}}$

Exotherm: $T_{\text{sample}} > T_{\text{ref}}$ Endotherm: $T_{\text{sample}} < T_{\text{ref}}$

- Good screening tool sample 5-20mg
- No pressure measurement
- Correlation calculations allow prediction of shock sensitivity and explosion propagation (Yoshida Correlation).
- Program extensions allow easy accurate calculation of Cp and kinetics

ΔT_{ad} Estimation for Continuous Flow **Thermal Deprotection**



Micro Reaction Calorimeter

- Early Phase Screening Tool
- Variety of Data
 - Heat of Reaction/Mixing
 - Titration of reagents
 - Heat Capacity Determination
- Small sample size (3 mL total volume)
- Automated Dosing
- Solids addition

Use of microcalorimeter to estimate adiabatic temperature rise

16

Reacting to Early Phase Risk Assessments

- Use scale as a measure of likelihood =>
 - Larger scale (volume) indicates increased risk
 - Policy to evaluate all reactions run in lab hood if >5L scale (>2 L scale if identified high hazard transformation).
- Leverage modeling data as much as possible early on; confirm with screening experimentation in medium/high severity situations.
- Don't be afraid to call a safety timeout.

Lilly's Thermal Hazard Lab Vision our 'Why'

Proactively identify and eliminate/mitigate Thermal Hazard Risks to Lilly's:

Process Safety is fundamentally 'Respect for People' in action.

Through 'inherently safer' intermediate and process design