

CyberPHA

A proven method to assess industrial control system cybersecurity risk

Presented by: Jacob Morella

John A. Cusimano

Vice President of Industrial Cybersecurity aeSolutions

John.Cusimano@aesolns.com

- 30 years experience in industrial automation
 - Kodak, Moore Products, Siemens, exida, aeSolutions
- Specialization in:
 - ICS Cybersecurity
 - Process Safety
 - Safety Instrumented Systems
 - High-availability systems
 - Industrial Networking
- ISA 99 voting member since 2009
- Chairman of recently approved ISA 62443-3-2 standard
- Lead developer/instructor for ISA cybersecurity training

Jacob Morella, PE_(SC)

Industrial Cybersecurity Technical Project Manager aeSolutions

Jacob.Morella@aesolns.com

- Experience in the process and process safety industries
 - o Process/Production Engineer
 - PHA, LOPA, and Alarm Rationalization Facilitator
 - Automation Engineer
- Specialization in:
 - ICS Cybersecurity
 - Process Safety
 - Safety Instrumented Systems
- ISA cybersecurity trainer
- PHA/LOPA Trainer

A CyberPHA Is

A safety-oriented methodology to conduct a security risk assessment for an ICS / SIS

- Systematic, consequence-driven approach
- Aligned with ISA/IEC 62443-3-2 and ISA TR84.00.09 standards
- Leverages established process safety information and techniques (e.g. PHA/HAZOP/LOPA)
- Integrates multiple engineering disciplines
- Delivers a risk-ranked mitigation plan

A CyberPHA Is

- Not a way to assign blame
- Not a solo activity
- Not an Audit
- Not a replacement for Process Safety PHAs

It's not just about IT anymore - Operations is a target

Process Safety & Industrial Cybersecurity

Process Safety & Cybersecurity Standards

Process Safety and Functional Safety Standards:

OSHA 29CFR1910.119 EPA 40CFR68 IEC 61508 ISA 84 / IEC 61511 two clauses in 2016 edition regarding security of SIS

Bridging Documents:

ISA TR 84.00.09 IEC TR 63069 NAMUR NA 163

IT Cybersecurity Standards:

ISO/IEC 27000 NIST 800 Series CIS Controls PCI DSS NIST Cybersecurity Framework

OT Cybersecurity Standards:

ISA/IEC 62443 NERC CIP API 1164 NIST 800-82

Functional Safety Standards

61511-1 2nd Edition, FDIS

- ▶ 8.2.4: A security risk assessment shall be carried out to identify the security vulnerabilities of the SIS
- ▶ 11.2.12: The design of the SIS shall be such that it provides the necessary resilience against the identified security risks

NOTE: Guidance related to SIS security is provided in ISA TR84.00.09 and ISA/IEC 62443-3-2.

Cyber Risk Assessment Challenges

- Modern control systems and safety systems are complex
- ▶ It very common for them to be integrated
- ▶ A single threat or vulnerability could disable multiple layers of protection
- ▶ Identifying the cyber threats and vulnerabilities that can lead to high risk consequences can be challenging
- ▶ Process safety studies (e.g. PHAs, HAZOPs, LOPAs) typically do not take into account cybersecurity initiating events or effectiveness of cybersecurity safeguards

CyberPHA Benefits

- ▶ Provides management with risk-ranked mitigation plan
- ▶ Encourages collaboration, practical solutions and buy-in
- ▶ Satisfies new IEC 61511 SIS security requirements
- Uncovers "hidden" risks
- Establishes a baseline to measure progress and justify decisions
- Raises cybersecurity awareness
- Successfully applied to hundreds of ICS since 2013

Example "As-Found" Logical Network Diagram

© 2019 aeSolution

Example "As-Found" Physical Network Diagram

© 2019 aeSolutions

Peer Group Rankings

NIST		NIST Subcategory Code / Topic	Client	Ind	Ref vs
Function			Facility	Average	Ind Avg
IDENTIFY	AM	Asset management of IACS equipment	80%	60%	20%
	AM	Prioritization of IACS Assets	35%	60%	-25%
	GV	IACS Policies & Procedures	25%	40%	-15%
	RM	Development of IACS risk management processes	50%	65%	-15%
	RA	Conduct IACS assessments and audits	75%	80%	-5%
PROTECT	AC	Logical access control to IACS	50%	65%	-15%
	AC	Physical access control for IACS	50%	80%	-30%
	AC	Remote access to IACS assets	50%	75%	-25%
	AC	IACS network segmentation/isolation	80%	85%	-5%
	AT	IACS Cybersecurity awareness and training	50%	15%	35%
	IP	IACS Vulnerability (patch) management	50%	40%	10%
	IP	Management of change procedures for IACS	50%	55%	-5%
	PT	Removable media access to IACS is managed and controlled	75%	60%	15%
	PT	Hardening of IACS resources	65%	50%	15%
	PT	IACS networks consist of multiple layers of protection	50%	30%	20%
DETECT	AE	Abnormal IACS activity can be detected and analyzed in a timely manner	25%	55%	-30%
	CM	Malware detection software installed and maintained on IACS computers	50%	55%	-5%
	DP	IACS networks are monitored to detect potential cybersecurity events	25%	45%	-20%
RESPOND	RP	IACS incident response plans have been developed and communicated	25%	20%	5%
RECOVER	RP	IACS backups taken, stored securely and tested	75%	65%	10%
	52%	55%	-3%		

Example Zones/Conduits

Unit	Zone/Conduit	Zone Type	Z/C Description	System(s)		
Unit 1	BPCS & HMIs	Zone	DCS controllers and	Yokogawa Centum VP		
			Operator HMIs for the unit	Windows Workstations		
	SIS	Zone	SIS controllers for the unit	Yokogawa ProSafe-RS		
Unit 2	BPCS & HMIs	Zone	DCS controllers and	Yokogawa Centum VP		
			Operator HMIs for the unit. Unit is operated from a BRM, not the main control room.	Windows Workstations		
Common	Engineering Workstations (DCS and SIS)	Zone	Yokogawa Engineering and	Windows Workstations		
			Safety workstations for configuration of the DCS	Yokogawa Centum VP		
			and SIS	Yokogawa ProSafe-RS		
	Historian	Zone	Historian system and OPC	Historian Server		
			server for each domain. Historical data for DCS trending and transfer to L4 historian.	OPC Servers		
	Balance of Plant	Zone	3rd Party Packages (e.g. Air compressors). Network connectivity is alarming only, no control capability.	Skid PLCs (primarily Allen Bradley)		
	PCN	Conduit	Process control network	PCN Switches (Cisco)		

Cyber Consequence Assessment

Consequences	Causes	Cause Type	Independent Protection Layers		Mitigated RR		December	RR aft	RR after Rec	
			IPL Description	IPL Type	L	RR	Recommendations		RR	
Potential for decreased Low Pressure (LP) Flash Drum overhead vapor flow leading to increased pressure as the system equalizes with upstream equipment (~550 psig). Potential to overpressure the LP Flash Drum (rated for 75 psig MAWP) leading to loss of containment and release of flammable and toxic (2% H2S) gas	loop malfunction drives PV-101 closed	BPCS Instrument Loop Failure (include all loop components)	PSV-201A/B (2x50%) set at 75/79 psig relieve to the flare header. Single IPL Credit - Multiple PRVs required.	SIF	6	L		6	L	
to the production building. Potential for fire/explosion and multiple fatalities. 2. Potential for decreased level leading to vapor blowby when the solids purge valve opens (on a timer). Potential for release of release of flammable and toxic (2% H2S) gas from an atmospheric system at ground level in a remote area.	Level control loop malfunction driving LV- 101 open.	BPCS Instrument Loop Failure (include all loop components)	Low Level DCS alarm (LS-102) with operator action to restore level or depressurize and shut down the system	Alarm	3	M-2	Implement a low-low Level (2003) SIL 2 SIF that closes the solids purge valves (1002).	5	L	
Potential for fire/explosion and multiple fatalities										

The CyberPHA Team

Collaborative Workshop Team

- Cybersecurity/Networking SME
- Process Safety/Controls SME
- Automation/Controls (Site)
- IT Applications (Site)

- Networking (Site)
- Information Security (Site)
- Process Safety (Site)
- Experienced Operator(Site)

CyberPHA Workshop Tools

Risk and Security Risk

Risk - "(exposure to) the possibility of loss, injury, or other adverse or unwelcome circumstance; a chance or situation involving such a possibility" – Oxford English Dictionary, 3rd ed.

Risk = Impact x Likelihood

"[Security] Risk is a function of the likelihood of a given threat-source exercising a particular potential vulnerability, and the resulting impact of that adverse event on the organization." – NIST SP800-30

Security Risk = Impact x (Threats x Vulnerabilities)

Cybersecurity Likelihood

CyberPHA Reporting

Risk Register:
Threats
Consequences
Likelihoods

Assessment:
HSE Risks
Revenue Risks
Other Risks

Data:All the Findings
'As-found' Info
Best Practices

Summarize results Executive-level report Detailed full report

aeCyberPHA Comprehensive Report

Refreshed System Diagrams

Risk Register

aeCyberPHA

Executive

Presentation

Asset Inventory Peer-Group Rankings

Vulnerability Register Value-weighted Recommendations

Gap Report Strategic Recommendations

Cybersecurity Bowties

For More Information

www.aesolns.com

John Cusimano, CISSP, GICSP, CFSE VP of Industrial Cybersecurity

John.Cusimano@aesolns.com

Jacob Morella, PE, GICSP, CFSE IC Technical Project Manager Jacob.Morella@aesolns.com

HatMan (aka Triton/TriSIS) Malware

- Sophisticated malware targeting Triconex SIS
- Detected in Nov 2017 in the Middle East
- First reported cyber attack on a safety instrumented system (SIS)
- Two-stage attack
 - Compromise TriStation engineering workstation
 - Place a Remote Access Trojan (RAT) on the SIS controller
- Discovered due to bug in the malware that caused the SIS to trip (failsafe)

Just because a SIS is SIL rated does not mean it is immune to cyber threats

HatMan MALWARE TriStation **Engineering Workstation** RAT injected Triconex

Tricon

REFINERY #3

Critical Findings

- Automatic file replication between business and PC through mapped drives
- Domain admin accts with elevated privileges on Honeywell servers
- AMS system enables remote modification of field devices from L3

Summary of Compliance and Risk Assessments

RISK PROFILES

