CHARACTERIZATION OF REACTIVE CHEMICAL HAZARDS VIA CALORIMETRY

SAI SWETHA SATHANAPALLY
PROFESSIONAL MASTER’S STUDENT
DAVIDSON SCHOOL OF CHEMICAL ENGINEERING
• Time to Maximum Rate Under Adiabatic Conditions, T_{MRad}, is a measure of probability of occurrence of a runaway.

• Adiabatic Temperature Rise ΔT_{ad} is a measure of consequence.

• Stoessel Criticality Index, risk is low at $T_{MRad} \geq 24$ hours and $\Delta T_{ad} \leq 50$ K.

• Temperature at which T_{MRad} is 24 hours is called the TD24.

• Calorimetric techniques are used for the evaluation of these parameters.

Figure 1: Temperature profile and the corresponding self-heat rate. (Source: AKTS Thermal Safety Software website)
CALORIMETRIC TECHNIQUES

- Various Calorimeters: Differential Scanning Calorimetry (DSC), Accelerating Rate Calorimeter, Reaction Calorimeter, Thermal Activity Monitor, Advanced Reactive System Screening Tool, Vent Sizing Package 2, Automatic Pressure Tracking Adiabatic Calorimeter.

- DSC is the most commonly used technique in safety laboratories.

- Onset Temperature, Temperature Vs Time and Self-Heat Rate Vs Temperature data can be obtained from calorimetric experiments.

Figure 2: Dynamic DSC Experiment (Source: Crowl et.al, 2015)
ANALYSIS OF CALORIMETRIC DATA

The steps to determine the TMRad and the TD24 are as follows:
1. Evaluation of the Kinetics of the Reaction
2. Correction of Experimental Data
3. Estimation of the TMRad

Note: The standard approach is meant for simple non-autocatalytic reactions. It gives a more conservative estimate of the TMRad. For all complex reactions, the expert approach gives more reliable results.

<table>
<thead>
<tr>
<th>THE STANDARD APPROACH</th>
<th>THE EXPERT APPROACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrhenius Linearization Method</td>
<td>Complex non-linear optimization methods</td>
</tr>
<tr>
<td>(\ln \frac{d \alpha}{dT} = \ln k_0 + n(1 - \alpha) - \frac{E}{RT})</td>
<td>Model Free Kinetics</td>
</tr>
<tr>
<td>Enhanced Fisher’s Method</td>
<td>Behavior of reacting system simulated under adiabatic conditions</td>
</tr>
<tr>
<td>• Correcting temperature vs time data for (\Phi)</td>
<td></td>
</tr>
<tr>
<td>Frank Kamenetskii Method</td>
<td>Estimate TMRad using simulation</td>
</tr>
<tr>
<td>• Zero order kinetics assumption</td>
<td>• Software packages are available</td>
</tr>
<tr>
<td>(TMR_{\text{ad}} = \frac{c_p R T_0^2}{q_0 E})</td>
<td>Source: Kossoy et.al, 2015</td>
</tr>
</tbody>
</table>
ADVANCED KINETICS TECHNOLOGY SOLUTIONS THERMAL SAFETY SOFTWARE

• Requires about 3-4 dynamic DSC runs.

• Evaluates kinetics assuming the differential iso-conversional approach.

• Simulates reacting system behavior under adiabatic conditions and for extended temperature ranges.

• It has a module for the prediction of the TMRad and the TD24. Capable of predicting the Self Accelerating Decomposition Temperature (SADT).

CHEMINFORM ST. PETERSBURG THERMAL SAFETY SERIES

• Kinetics based simulation approach.

• Consists of a module to predict the TMRad and the SADT.
• 50 K or 100 K below the onset temperature is considered as the safe handling process temperature.

• Onset temperature detected by a calorimeter depends on a number of factors such as experimental conditions, sample mass used, and sensitivity. TD24 is based on reaction kinetics and therefore, scientifically more accurate.

• ADT24 is the temperature at which TMRad is 24 hours derived from adiabatic storage tests.

\[T_{D24}^{[K]} = 0.65T_{\text{onset}}^{[K]} + 50 \]

Figure 3: Comparison of ADT24, TD24, 100 K and 50 K rules,
(Source: Pastre et.al, 2000)
CONCLUSIONS

• From a safety perspective, TMRad is the time within which an emergency cooling system must be effective in order to cope with an imminent runaway reaction.

• TD24 means that an intervention is possible within 24 hours.

• TD24 is scientifically more accurate than the 100 K and 50 K rules.

• Run dynamic DSC tests, analyze experimental data to predict the TMRad and TD24: (1) Standard Approach (2) Expert Approach

• Adiabatic experiments (~24 hrs) to confirm the validity of the predictions.
Questions?