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Recent Advances
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Ø Huge success in the past decade.

Ø Mainly due to the advance in hardware and the abundance of data

Cray 2 supercomputer 
(1985)
 1.9GFlops

40.8GFlops

Credit: Prof. Venkat Venkatasubramanian
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What can LLMs do

Ø GPT-4, released on March 2023. Excel at qualitative subjects: History, biology, bar 

exam, and verbal. Struggles with math, coding, and reasoning
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What’s new lately?

Ø OpenAI o1 model: released on September 2024. Significant improvement in 

math, science, and reasoning.

Ø Similar to how a human may think for a long time before responding to a difficult 

question, o1 uses a chain of thought when attempting to solve a problem
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What can LLMs do

Perhaps, you have used ChatGPT for 
• Correcting grammar 
• Answering the homework problems
• Drafting emails and letters
• Writing code (GitHub copilot)
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Applications of LLM in Research

Ø Coscientist (Boiko et al., 2023):  an AI copilot for chemical research, autonomously 
designing, planning, and conducting complex experiments.

Ø LLaVA-Med (Li et al., 2024), BiomedGPT (Zhang et al., 2024), Med-Gemini (Lin et al., 
2024): AI Assistants that help doctors in biomedical imaging by analyzing medical 
images and generating diagnostic reports.

Ø PILOT (Schweidtmann 2024): LLM for process engineering.

Ø scChat (Lu et al. 2024) AI copilot for interpreting RNA sequencing data and providing 
suggestions for experimental design.

Ø OptiChat (Chen et al. 2024) A chatbot for explaining optimization models to nonexperts.

Ø FaultExplainer (this talk): an interactive user interface for monitoring and interpreting 
the fault occurring in TEP.

Challenge: LLM tends to hallucinate.



Combine LLM with Machine Learning 
Models for

Process Monitoring

• Fault Detection: Detect if a fault has occurred 
• Fault Identification: Identify the variables most relevant to the fault 
• Fault Diagnosis (or Classification): Diagnose the root cause of the fault
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Tennessee Eastman Process

Ø TEP is an open-source simulator written in Fortran that resembles a real 
chemical process by Eastman 

Ø Time series data can be collected from over 40 sensors that measure the 
state variables.

Ø Task: From measured state variables, perform fault detection using ML/AI
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Examples of State Variables with Sensor Data

Ø Examples include feed flow rates, temperatures, pressures
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List of Potential Faults

Ø The following “faults” are created synthetically by the simulator

Ø These faults will cause the measured state variables to change from their 
normal operating conditions which further cause safety hazards. 
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Step change in reactor cooling water temperature

Step change in 
reactor temperature

Ø This fault could cause runaway reaction. The controller will increase the cooling 
water flowrate to bring the temperature down 
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Classical Machine Learning Algorithm

Ø Principal component analysis: identify the principal components where the 
data have the largest variance. The non-principal components are “noise”.

Ø Approach: singular value decomposition
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PCA

Ø The region within the thresholds represents the Normal Operating Condition 
(NOC) under random noise. 

Ø The region outside of the thresholds represents the systematic variation 
from NOC.

Ø Test statistics measure the variation in the reduced space and indicate any 
fault if the thresholds are violated.  



14

Anomaly Detection Using PCA

Ø T^2 statistics: describes how far the data is from normal operating condition

Limitation: Lack of interpretation.
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Variable Contribution

Ø Motivation: identify the process variables that contribute the most to the 
fault.
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Overview of FaultExplainer

Ø FaultExplainer has a GUI to monitor all the process variables

Ø Fault detection and identification is conducted by PCA.

Ø LLM generates a fault report to explain the potential causes of the fault to process 
operators.

Ø FaultExplainer can also answer general queries.



17

What’s inside the box?

LLM (GPT-4)

GUI

FaultExplainer

TEP model

Documentation

RAG

Function 
calls

User queries

Prompt templates

pca()
T_statistics()

Contrib()Code
execution

Ø LLM: the brain (coordinate user queries and all the tasks).

Ø Prompt templates: instructions to the LLM with demonstrations

Ø Function calls: conduct quantitative tasks such as PCA.

Ø Retrieval-Augmented Generation (RAG): provide external information to alleviate 
hallucination, e.g., process knowledge of TEP.

Simulation data
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LLM for Process Monitoring and Fault Detection
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Qualitative Analysis of GPT-4o and o1 Models

Ø Both models are prompted to diagnose the step change in the feed composition of 
inert B based on the top six changes in the sensor measurement.

GPT-4o

o1

O1 is able to provide a more logical and 
quantitative reasoning of the fault 
propagation, including how the control 
system reacted to the fault.
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Quantitative Results

Ø We prompt the LLMs to give top 3 possible causes of the fault based on the top 6 
contributing features

Ø PCA can identify 11/15 of the faults

Ø The success rate of identifying the root cause of the fault

 GPT-4o: 6/11 o1: 9/11
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Conclusions and Future Work

Ø Combining LLMs like GPT and o1 with mathematical models can get both 
explainability and rigor.

Ø With sufficient training data, we can fine-tune a LLM for tasks such as PHA, 
HAZOP, explaining controller behavior.


