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Recent Advances

» Huge success in the past decade.
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What can LLMs do

» GPT-4, released on March 2023. Excel at qualitative subjects: History, biology, bar

exam, and verbal. Struggles with math, coding, and reasoning
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What's new lately? '

» OpenAl o1 model: released on September 2024. Significant improvement in

math, science, and reasoning.

» Similar to how a human may think for a long time before responding to a difficult

question, o1 uses a chain of thought when attempting to solve a problem
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What can LLMs do
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Chatg PT

ublic code and text
on the internet

Perhaps, you have used ChatGPT for
e Correcting grammar
* Answering the homework problems
* Drafting emails and letters
* Writing code (GitHub copilot)

GitHub

| L BEE Provide Editor context ZEE

GitHub Copilot

Service P EREE Improve Suggestions SRR

----- Provide Suggestions EEEl4

Terence Tao

@tao®@mathstodon.xyz

Al tools like #ChatGPT will soon be
capable of answering a large fraction of
traditional university homework type
questions with reasonable accuracy. In
the long term, it seems futile to fight
against this; perhaps what we as
lecturers need to do is to move to an
"open books, open Al" mode of
examination where we give the students
full access to Al tools but ask them
more challenging questions, both to
teach the material and also to teach the
students how best to use the Al tools of
the future.




Applications of LLM in Research @

Coscientist (Boiko et al., 2023): an Al copilot for chemical research, autonomously
designing, planning, and conducting complex experiments.

LLaVA-Med (Li et al., 2024), BiomedGPT (Zhang et al., 2024), Med-Gemini (Lin et al.,
2024): Al Assistants that help doctors in biomedical imaging by analyzing medical
images and generating diagnostic reports.

PILOT (Schweidtmann 2024): LLM for process engineering.

scChat (Lu et al. 2024) Al copilot for interpreting RNA sequencing data and providing
suggestions for experimental design.

OptiChat (Chen et al. 2024) A chatbot for explaining optimization models to nonexperts.
FaultExplainer (this talk): an interactive user interface for monitoring and interpreting

the fault occurring in TEP.

Challenge: LLM tends to hallucinate.
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Combine LLM with Machine Learning
Models for

Process Monitoring

* Fault Detection: Detect if a fault has occurred

* Fault Identification: Identify the variables most relevant to the fault
* Fault Diagnosis (or Classification): Diagnose the root cause of the fault

l
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Tennessee Eastman Process E

» TEP is an open-source simulator written in Fortran that resembles a real
chemical process by Eastman

» Time series data can be collected from over 40 sensors that measure the
state variables.

» Task: From measured state variables, perform fault detection using ML/AI
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Examples of State Variables with Sensor Data

Examples include feed flow rates, temperatures, pressures
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List of Potential Faults
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» The following “faults” are created synthetically by the simulator

» These faults will cause the measured state variables to change from their
normal operating conditions which further cause safety hazards.

Variable Description Type
IDV(1) A /C Feed Ratio, B Composition Constant (Stream 4) Step
IDV(2) B Composition, A/C Ratio Constant (Stream 4) Step
IDV(3) D Feed Temperature (Stream 2) Step
IDV(4) Reactor Cooling Water Inlet Temperature Step
IDV(5) Condenser Cooling Water Inlet Temperature Step
IDV(6) A Feed Loss (Stream 1) Step
IDV(7) C Header Pressure Loss - Reduced Availability (Stream 4) Step
IDV(8) A, B, C Feed Composition (Stream 4) Random Variation
IDV(9) D Feed Temperature (Stream 2) Random Variation
IDV(10) C Feed Temperature (Stream 4) Random Variation
IDV(11) Reactor Cooling Water Inlet Temperature Random Variation
IDV(12) Condenser Cooling Water Inlet Temperature Random Variation
IDV(13) Reaction Kinetics Slow Drift
IDV(14) Reactor Cooling Water Valve Sticking
IDV(15) Condenser Cooling Water Valve Sticking
IDV(16) Unknown

IDV(17) Unknown

IDV(18) Unknown

IDV(19) Unknown

IDV(20) Unknown

IDV(21) | The valve for Stream 4 was fixed at the steady state position | Constant Position
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Step change in reactor cooling water temperature @

» This fault could cause runaway reaction. The controller will increase the cooling
water flowrate to bring the temperature down
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Classical Machine Learning Algorithm ~ 7=D

» Principal component analysis: identify the principal components where the
data have the largest variance. The non-principal components are “noise”.

» Approach: singular value decomposition
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PCA o

» The region within the thresholds represents the Normal Operating Condition
(NOCQ) under random noise.

» The region outside of the thresholds represents the systematic variation
from NOC.

» Test statistics measure the variation in the reduced space and indicate any
fault if the thresholds are violated.

0.40 -

0.35 A

0.30 A

0.25 A

0.20 A

P(x)

0.15 A

0.10 A

0.05 A

0.00

13



Anomaly Detection Using PCA =

» T/2 statistics: describes how far the data is from normal operating condition
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Limitation: Lack of interpretation.
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Variable Contribution
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» Motivation: identify the process variables that contribute the most to the
fault.

Variable Description Units
XMEAS(1) A Feed (Stream 1) kscmh j=1
XMEAS(2) D Feed (Stream 2) kg/hr
XMEAS(3) E Feed (Stream 3) kg/hr
XMEAS(4) Total Feed (Stream 4) kscmh
XMEAS(5) Recycle Flow (Stream 8) kscmh
XMEAS(6) Reactor Feed Rate (Stream 6) kscmh
XMEAS(7) Reactor Pressure kPa gauge
XMEAS(8) Reactor Level %
XMEAS(9) Reactor Temperature Deg C
XMEAS(10) Purge Rate (Stream 9) kscmh
XMEAS(11) Product Sep Temp Deg C
XMEAS(12) Product Sep Level %
XMEAS(13) Prod Sep Pressure kPa gauge
XMEAS(14) Prod Sep Underflow (Stream 10) m?® /hr
XMEAS(15) Stripper Level %
XMEAS(16) Stripper Pressure kPa gauge
XMEAS(17) Stripper Underflow (Stream 11) m® /hr
XMEAS(18) Stripper Temperature Deg C
XMEAS(19) Stripper Steam Flow kg/hr
XMEAS(20) Compressor Work kW
XMEAS(21) | Reactor Cooling Water Outlet Temp Deg C
XMEAS(22) | Separator Cooling Water Outlet Temp Deg C
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Overview of FaultExplainer

» FaultExplainer has a GUI to monitor all the process variables

» Fault detection and identification is conducted by PCA.

» LLM generates a fault report to explain the potential causes of the fault to process

operators.

» FaultExplainer can also answer general queries.
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What's inside the box? @

» LLM: the brain (coordinate user queries and all the tasks).
» Prompt templates: instructions to the LLM with demonstrations
» Function calls: conduct quantitative tasks such as PCA.

> Retrieval-Augmented Generation (RAG): provide external information to alleviate
hallucination, e.qg., process knowledge of TEP.

TEP model GUI User queries

Y

y Simulation data

[ Prompt templates |«

Function |
calls pca() !

LLM (GPT-4)

T statistics()

[ Code Contrib()
L execution

Documentation



LLM for Process Monitoring and Fault Detection
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Fig. 8.1. A process flowsheet for the TEP with the second control structure in [205]

The process produces two products from four reactants. Also present are an inert and



Qualitative Analysis of GPT-40 and 01 Models @

» Both models are prompted to diagnose the step change in the feed composition of
inert B based on the top six changes in the sensor measurement.

e Root Cause 1: Increased Reactor Pressure or Flow Rate: Root Cause 1: Increased Ingress of Inert B into the
An increase in reactor pressure or flow rate could lead to higher ~System
purge rates and changes in the composition of the purge stream. The  An unexpected increase in the influx of inert Component B into
control system might respond by increasing the purge valve opening  the process could explain the observed feature deviations. This
to manage the pressure, leading to the observed increase in purge . . .
may result from contamination in one of the feed streams, par-

rate and component B in the purge. The increased flow rate could . . . .
also result in more component B being carried over to the reactor, ticularly Stream 4, which includes a mixture of A, B, and C.

explaining the increase in component B to the reactor. The increase If the concentration of B in this stream increases, more inert B
in A and E feed loads could be a response to maintain reaction rates  enters the reactor feed, leading to an elevated mole percentage of
and product output under the new conditions. This root cause can Component B to the Reactor (Feature 4), as observed (+4'17%),

explain all six feature deviations. The accumulation of inert B in the process causes higher concen-
trations of B in the recycle loop. To prevent excessive buildup
G PT-l|.O of inert gas, the control system responds by increasing the Purge

Valve opening (Feature 3, +20.86%) to remove the excess inert.
This action increases the Purge Rate (Feature 2, +20.96%) and
results in higher concentrations of Component B in the Purge
stream (Feature 1, +5.63%).

The increased presence of inert B in the reactor feed dilutes the
concentrations of reactive species, potentially reducing the over-

O1isableto prOV|de a more |09IC8| and all reaction rates. The control system compensates for this by
qua ntitative reasoning of the fault increasing the feed rates of reactants A and E. This is evidenced
] ] ] by the significant increase in A Feed Load (Feature 6, +30.74%)
propagation, |nC|Ud|ng how the control and the smaller increase in E Feed Load (Feature 5, +1.67%).
System reacted to the fault. Since A participates in all reactions and is more critical, a larger
increase in its feed rate is justified. Therefore, this root cause

explains all six observed feature deviations.
Features explained: 6/6.
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Quantitative Results @

» We prompt the LLMs to give top 3 possible causes of the fault based on the top 6
contributing features

» PCA can identify 11/15 of the faults

» The success rate of identifying the root cause of the fault

GPT-40: 6/11 01: 9/11

Variable Description Type
IDV(1) - A/C Feed Ratio, B Composition Constant (Stream 4) Step
IDV(2) B Composition, A/C Ratio Constant (Stream 4) Step
IDV(3) D Feed Temperature (Stream 2) Step
IDV(4) Reactor Cooling Water Inlet Temperature Step
IDV(5) Condenser Cooling Water Inlet Temperature Step
IDV(6) A Feed Loss (Stream 1) Step
IDV(7) C Header Pressure Loss - Reduced Availability (Stream 4) Step
IDV(8) A, B, C Feed Composition (Stream 4) Random Variation
IDV(9) D Feed Temperature (Stream 2) Random Variation
IDV(10) C Feed Temperature (Stream 4) Random Variation
IDV(11) Reactor Cooling Water Inlet Temperature Random Variation
IDV(12) Condenser Cooling Water Inlet Temperature Random Variation
IDV(13) Reaction Kinetics Slow Drift
IDV(14) Reactor Cooling Water Valve Sticking
IDV(15) Condenser Cooling Water Valve Sticking
IDV(16) Unknown

IDV(17) Unknown

IDV(18) Unknown

IDV(19) Unknown

IDV(20) Unknown

IDV(21) | The valve for Stream 4 was fixed at the steady state position | Constant Position 20




Conclusions and Future Work @

» Combining LLMs like GPT and o1 with mathematical models can get both
explainability and rigor.

» With sufficient training data, we can fine-tune a LLM for tasks such as PHA,
HAZOP, explaining controller behavior.
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