New Computational Tools for

Predicting Reactivity

Brett M. Savoie

Davidson Associate Professor of Chemical Engineering,
Purdue University
Students: Qiyuan Zhao, Tyler Pasut, Michael Woulfe
P2SAC Fall Conference, Purdue University, 12/5/23

A \rightarrow B

- To safely plan a known reaction, we need access to solid thermodynamic data (e.g., $\Delta \mathrm{H}_{\mathrm{f}}, \mathrm{S}^{\circ}, \mathrm{C}_{\mathrm{v}}$) to understand and classify risks.
- This is a "known unknown" in that we know the reaction, $A \rightarrow B$, but we need values for a few unknown variables.

$A \rightarrow$? $\rightarrow B ; A \rightarrow B+$? ; A \rightarrow ?

- $\mathbf{A} \rightarrow$? $\rightarrow \mathbf{B}$, means that we know the net reaction, but there may be a consequential (e.g., potentially reactive) intermediate. Even if we have accurate thermodynamic data on A / B, neglecting the intermediate could be disastrous.
- The $\mathbf{A} \rightarrow \mathbf{B +}$? (unknown side-reaction) and $\mathbf{A} \rightarrow$? (unknown main product), problems have similar "unknown unknown" characteristics.

$A \rightarrow B$

TAFFI Component Increment Theory

 - This is a "known unknown" in th CTT) e reaction, $A \rightarrow B$, but we need values for a few unknown variables.
$\mathrm{A} \rightarrow$? $\rightarrow \mathrm{B} ; \mathrm{A} \rightarrow \mathrm{B}+$? ; $\mathrm{A} \rightarrow$?
 thermodynamic data on A / B, neg \mathcal{D} Drmediate could be disastrous. (YARP)
 - The $\mathrm{A} \rightarrow \mathrm{B}+$? (unknown side-reaction) and $\mathrm{A} \rightarrow$? (unknown main product), problems have similar "unknown unknown" characteristics.

Challenges of Contemporary Group Theories

Benson Group Theory:

- The idea is to decompose molecular properties ($\Delta \mathrm{H}_{\mathrm{f}}, \mathrm{S}^{\circ}, \mathrm{C}_{\mathrm{v}}$) as the sum of "group" contributions.

From Anslyn and Dougherty's Textbook

- Group contributions are calculated based on trusted experimental or computational data, and transferability is assumed.

Problems we want to address:

- Specificity: the definition of a "group" has never been formalized and inconsistent granularity is applied.

1) $\mathrm{C}-(\mathrm{C})(\mathrm{H})_{3} \ldots \ldots \ldots . . .2(-10.20)$
2) C -(C) $)_{3}(\mathrm{H}) \ldots \ldots \ldots \ldots . .$.
3) $\mathrm{C}-\left(\mathrm{C}_{\mathrm{B}}\right)(\mathrm{C})(\mathrm{H})_{2} \ldots \ldots \ldots \ldots-{ }^{-4.86}$
4) C_{B}-(C) $\ldots \ldots \ldots \ldots \ldots . . .$.

- Provenance: inconsistent thermodynamic data is available/used to determine group contributions.
$-5.15 \mathrm{kcal} /$ mole
$(-21.6 \mathrm{~kJ} / \mathrm{mole})$

Experimental $\Delta \mathbf{H}_{\mathrm{f}}:-5.15+/-0.34 \mathrm{kcal} / \mathrm{mol}$

- Extensibility: because of the provenance and specificity problems, it isn't possible to develop new groups in a consistent way.

Challenges of Contemporary Group Theories

Benson Group Theory:

- The idea is to decompose molecular properties ($\Delta \mathrm{H}_{\mathrm{f}}, \mathrm{S}^{\circ}, \mathrm{C}_{\mathrm{v}}$) as the sum of "group" contributions.
- Group contributions are calculated based on trusted experimental or computational data, and transferability is assumed.

Problems we want to address:

- Specificity: the definition of a "group" has never been formalized and inconsistent granularity is applied.

- Provenance: inconsistent thermodynamic data is available/used to determine group contributions.
- Extensibility: because of the provenance and specificity problems, it isn't possible to develop new groups in a consistent way.

Challenges of Contemporary Group Theories

Benson Group Theory:

- The idea is to decompose
molecular properties $\left(\Delta H_{f}, S^{\circ}, C_{v}\right)$ as the
sum of "group" contributions.

> Can we circumvent the provenance and extensibility challenges using the throughput and accuracy of modern quantum chemistry?

Zhao, Q.; Savoie, B. M.; Enthalpy of Formation Prediction via a fully Self-Consistent
Component Increment Theory. J. Chem. Info. Model. 2020, 60, 2199-2207

- Extensibility: because of the provenance and specificity problems,
it isn't possible to develop new groups in a consistent way.

TAFFI Component Increment Theory (TCIT)

The fundamental idea

- Systematize component-definitions and model compound selection with rigorous graph-based typing.

TCIT is a component theory
 (2-bond specific)

Topology Automated Force Field Interactions

S
C
C
C
C
C
C
C
C
C
H
H
O
H $\left[\begin{array}{lllllllllllll}0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathrm{H} & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \mathrm{H} & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Adjacency matrix for PEDOT

Seo, B.; Lin, Z.-Y.; Zhao, Q.; Webb, M. A.; Savoie, B. M. Topology Automated Force-Field Interactions (TAFFI): A Framework for Developing Transferable Force Fields. J. Chem. Inf. Model. 2021, 61 (10), 5013-5027. https://doi.org/10.1021/acs.jcim.1c00491.

P2SAC Publications

TAFFI Component Increment Theory (TCIT)

The fundamental idea

- Systematize component-definitions and model compound selection with rigorous graph-based typing.

TCIT is a component theory

(2-bond specific)

Topology Automated Force Field Interactions

P2SAC Publications

Adjacency matrix for PEDOT
S
C
C
C
C
C
C
C
H
H
H
O
O
H
H
H
H 1

Zhao, Q.; Savoie, B. M.; "Enthalpy of Formation Prediction via a fully Self-Consistent Component Increment Theory". J. Chem. Info. Model. 2020, 60, 2199-2207

Zhao, Q.; lovanac, N.; Savoie, B. M.; "Transferable Ring Corrections for Predicting Enthalpy of Formation of Cyclic Compounds" J. Chem. Info. Model. 2021, 61, 5013-5027

Seo, B.; Lin, Z.-Y.; Zhao, Q.; Webb, M. A.; Savoie, B. M. Topology Automated Force-Field Interactions (TAFFI): A Framework for Developing Transferable Force Fields. J. Chem. Inf. Model. 2021, 61 (10), 5013-5027. https://doi.org/10.1021/acs.jcim.1c00491.

TAFFI Component Increment Theory (TCIT)

The fundamental idea

- Systematize component-definitions and model compound selection with rigorous graph-based typing.

TCIT is a component theory
 (2-bond specific)

Topology Automated Force Field Interactions

Seo, B.; Lin, Z.-Y.; Zhao, Q.; Webb, M. A.; Savoie, B. M. Topology Automated Force-Field Interactions (TAFFI): A Framework for Developing Transferable Force Fields. J. Chem. Inf. Model. 2021, 61 (10), 5013-5027. https://doi.org/10.1021/acs.jcim.1c00491.
S
C
C
C
C
C
C
C
C
H
H
H
H
O
O
H
H
H 0

TAFFI Component Increment Theory (TCIT)

The fundamental idea

TCIT is a component theory
(2-bond specific)

- Systematize component-definitions and model compound selection with rigorous graph-based typing.

Topology Automated Force Field Interactions

P2SAC Publications

Seo, B.; Lin, Z.-Y.; Zhao, Q.; Webb, M. A.; Savoie, B. M. Topology Automated Force-Field Interactions (TAFFI): A Framework for Developing Transferable Force Fields. J. Chem. Inf. Model. 2021, 61 (10), 5013-5027. https://doi.org/10.1021/acs.jcim.1c00491.

TAFFI Component Increment Theory (TCIT)

The fundamental idea

TCIT is a component theory

(2-bond specific)

- Systematize component-definitions and model compound selection with rigorous graph-based typing.

Seo, B.; Lin, Z.-Y.; Zhao, Q.; Webb, M. A.; Savoie, B. M. Topology Automated Force-Field Interactions (TAFFI): A Framework for Developing Transferable Force Fields. J. Chem. Inf. Model. 2021, 61 (10), 5013-5027. https://doi.org/10.1021/acs.jcim. 1 c00491.
Zhao, Q.; Savoie, B. M.; "Enthalpy of Formation Prediction via a fully Self-Consistent Component Increment Theory". J. Chem. Info. Model. 2020, 60, 2199-2207

Zhao, Q.; lovanac, N.; Savoie, B. M.; "Transferable Ring Corrections for Predicting Enthalpy of Formation of Cyclic Compounds" J. Chem. Info. Model. 2021, 61, 5013-5027

Topology Automated Force Field Interactions

P2SAC
Publications
S
C
C
C
C
C
C
C
C
C
H
H
O
O
H
H 1

Adjacency PEDOT

TAFFI Component Increment Theory (TCIT)

The fundamental idea

TCIT is a component theory
(2-bond specific)

- Systematize component-definitions and model compound selection with rigorous graph-based typing.
- Two-bond specificity should improve both the accuracy and transferability of the resulting components.
- Parameterizing a component model would not be feasible with only experimental data.

Zhao, Q.; Savoie, B. M.; "Enthalpy of Formation Prediction via a fully Self-Consistent Component Increment Theory". J. Chem. Info. Model. 2020, 60, 2199-2207

Zhao, Q.; lovanac, N.; Savoie, B. M.; "Transferable Ring Corrections for Predicting Enthalpy of Formation of Cyclic Compounds" J. Chem. Info. Model. 2021, 61, 5013-5027

Seo, B.; Lin, Z.-Y.; Zhao, Q.; Webb, M. A.; Savoie, B. M. Topology Automated Force-Field Interactions (TAFFI): A Framework for Developing Transferable Force Fields. J. Chem. Inf. Model. 2021, 61 (10), 5013-5027. https://doi.org/10.1021/acs.jcim.1c00491.

P2SAC
Publications

Adjacency matrix for PEDOT monomer

Graphical Decomposition of Model Compounds

1-hydroxy-pent-2-ene-2-one

Graphical Decomposition of Model Compounds

identify components*

1-hydroxy-pent-2-ene-2-one

How will we select molecules for parameterizing TCIT components?

Graphical Decomposition of Model Compounds

identify components*

1-hydroxy-pent-2-ene-2-one
Recursively
generate
smallest
acyclic model
compounds

Graphical Decomposition of Model Compounds

identify components*

1-hydroxy-pent-2-ene-2-one

How will we select molecules for parameterizing TCIT components?

Recursively
generate smallest acyclic model compounds

Graphical Decomposition of Model Compounds

identify components*

1-hydroxy-pent-2-ene-2-one

How will we select molecules for parameterizing TCIT components?

Recursively generate smallest acyclic model compounds

Graphical Decomposition of Model Compounds

identify components*

1-hydroxy-pent-2-ene-2-one

How will we select molecules for parameterizing TCIT components?

Recursively generate smallest acyclic model compounds

Resolve dependencies

Graphical Decomposition of Model Compounds

Graphical Decomposition of Model Compounds

Graphical Decomposition of Model Compounds

Have we solved the specificity problem?
All components are unique out to a graph depth of two, no exceptions.

Have we solved the provenance problem?
All $\Delta \mathrm{H}_{\mathrm{f}}$ data is calculated at the G4 composite level, no exceptions.

Have we solved the extensibility problem?
Model compounds exist for all conceivable components, no exceptions.

Benchmarking $\Delta \mathrm{H}_{\mathrm{f}, \mathrm{gas}}$ Predictions Against the PNK Dataset

- Initial benchmarking set consists of ~ 1100 linear C, H, and O containing compounds from PNK^{1}
(1) J. B. Pedley, R. D. Naylor, S. P. Kirby "Thermochemical Data of Organic Compounds" $2^{\text {nd }}$ ed. 1986
- PNK is a core dataset for fitting Benson groups
- ~600 PNK compounds are small enough for G4 calculations and comparison with experiment.

Zhao, Q.; Savoie, B. M.; Enthalpy of Formation Prediction via a Fully Self-Consistent Component Increment Theory. J. Chem. Info. Model. 2020, 60, 2199-2207

Benchmarking $\Delta \mathrm{H}_{\mathrm{f}, \mathrm{gas}}$ Predictions Against the PNK Dataset

- Initial benchmarking set consists of ~ 1100 linear C, H, and O containing compounds from PNK^{1}
(1) J. B. Pedley, R. D. Naylor, S. P. Kirby "Thermochemical Data of Organic Compounds" $2^{\text {nd }}$ ed. 1986
- PNK is a core dataset for fitting Benson groups
- ~600 PNK compounds are small enough for G4 calculations and comparison with experiment.
- ~150 PNK compounds are large enough for direct G4 calculation and comparison with TCIT.

150 medium compounds from PNK

Zhao, Q.; Savoie, B. M.; Enthalpy of Formation Prediction via a Fully Self-Consistent Component Increment Theory. J. Chem. Info. Model. 2020, 60, 2199-2207

Benchmarking $\Delta \mathrm{H}_{\mathrm{f}, \mathrm{gas}}$ Predictions Against the PNK Dataset

- Initial benchmarking set consists of ~ 1100 linear C, H, and O containing compounds from PNK^{1}
(1) J. B. Pedley, R. D. Naylor, S. P. Kirby "Thermochemical Data of Organic Compounds" $2^{\text {nd }}$ ed. 1986
- PNK is a core dataset for fitting Benson groups
- ~600 PNK compounds are small enough for G4 calculations and comparison with experiment.
- ~150 PNK compounds are large enough for direct G4 calculation and comparison with TCIT.
- ~500 PNK compounds are large enough to evaluate the predictive accuracy of the increment theories.

Zhao, Q.; Savoie, B. M.; Enthalpy of Formation Prediction via a Fully Self-Consistent Component Increment Theory. J. Chem. Info. Model. 2020, 60, 2199-2207

Benchmarking $\Delta \mathrm{H}_{\mathrm{f}, \mathrm{gas}}$ Predictions Against the PNK Dataset

- Initial benchmarking set consists of ~ 1100 linear C, H, and O containing compounds from PNK^{1}
(1) J. B. Pedley, R. D. Naylor, S. P. Kirby "Thermochemical Data of Organic Compounds" $2^{\text {nd }}$ ed. 1986
- PNK is a core dataset for fitting Benson groups
- ~600 PNK compounds are small enough for G4 calculations and comparison with experiment.
- ~150 PNK compounds are large enough for direct G4 calculation and comparison with TCIT.
- ~500 PNK compounds are large enough to evaluate the predictive accuracy of the increment theories.
~500 large compounds from PNK

Zhao, Q.; Savoie, B. M.; Enthalpy of Formation Prediction via a Fully Self-Consistent Component Increment Theory. J. Chem. Info. Model. 2020, 60, 2199-2207

> TCIT shows comparable performance to BGIT/CHETAH but is derived exclusively from extensible G4 data.

How Many Components are Possible?

Prediction target:

We database all model compounds and components for reuse.

Over the past three years, we have parameterized new components in response to distinct project needs (many from P2SAC Pharma Members)

Current Database:

- ~35k distinct components for ΔH_{f} relevant to organic chemistry - ~35k distinct G4 calculations on organic molecules.
- ~450 distinct ring corrections

How Many Components are Possible?

How many components are required to predict the ΔH_{f} of all (physically relevant) organic molecules?

How many P2SAC funding periods would it take to make a "complete" or "gapless" component theory?

Treating PubChem as a Model of Organic Chemical Space

PubChem is a repository of chemical properties that contains many millions of organic species ranging from small molecules to oligonucleotides.

We recently started mining PubChem's H,C,N, and O containing molecules for distinct components and the model compounds necessary to predict ΔH_{f}

Treating PubChem as a Model of Organic Chemical Space

PubChem is a repository of chemical properties that contains many millions of organic species ranging from small molecules to oligonucleotides.

We recently started mining PubChem's H,C,N, and O containing molecules for distinct components and the model compounds necessary to predict ΔH_{f}

The derivative plot shows that TCIT initially generates ~ 2 new components per molecule, but by the end of the sampling ~100 molecules need to be sampled to find a new component.

Treating PubChem as a Model of Organic Chemical Space

PubChem is a repository of chemical properties that contains many millions of organic species ranging from small molecules to oligonucleotides.

We recently started mining PubChem's H,C,N, and O containing molecules for distinct components and the model compounds necessary to predict $\Delta \mathrm{H}_{\mathrm{f}}$

The derivative plot shows that TCIT initially generates ~2 new components per molecule, but by the end of the sampling ~100 molecules need to be sampled to find a new component.

New model compounds

Treating PubChem as a Model of Organic Chemical Space

TCIT now contains all CAVs necessary to predict ΔH_{f} of all $\mathrm{N}, \mathrm{H}, \mathrm{O}$, and C -containing molecules in pubchem. This is the largest repository of G4 calculations on large molecules in the world.

It is foreseeable that we could complete all B, F, Cl, S, and P containing structures over the next few years.

Extending TCIT to Radicals and lons

A recurring question is when will
TCIT support predictions on radicals and ions?

TCIT already covers neutral close-shell species, so these extensions require us only to predict the difference between the target and the nearest closedshell neutral.

This amounts to developing models to predict IP/EA/+ $\mathrm{H}^{+} /-\mathrm{H}^{+}$

Extending TCIT to Radicals and lons

A recurring question is when will
TCIT support predictions on radicals and ions?

TCIT already covers neutral close-shell species, so these extensions require us only to predict the difference between the target and the nearest closedshell neutral.

This amounts to developing models to predict IP/EA/+ $\mathrm{H}^{+} /-\mathrm{H}^{+}$

Graph \rightarrow IP/EA/+H+/-H+ Models

ио!!э!рәлd КБљәиә ио!!еп!!วе
 been developed by our group for The EGAT architecture has already

A \rightarrow B

- To safely plan a known reaction, we need access to solid thermodynamic data (e.g., $\Delta \mathrm{H}_{\mathrm{f}}, \mathrm{S}^{\circ}, \mathrm{C}_{\mathrm{v}}$) to understand and classify risks.
- This is a "known unknown" in that we know the reaction, $A \rightarrow B$, but we need values for a few unknown variables.

$A \rightarrow$? $\rightarrow B ; A \rightarrow B+$? ; A \rightarrow ?

- $\mathbf{A} \rightarrow$? $\rightarrow \mathbf{B}$, means that we know the net reaction, but there may be a consequential (e.g., potentially reactive) intermediate. Even if we have accurate thermodynamic data on A / B, neglecting the intermediate could be disastrous.
- The $\mathbf{A} \rightarrow \mathbf{B +}$? (unknown side-reaction) and $\mathbf{A} \rightarrow$? (unknown main product), problems have similar "unknown unknown" characteristics.

The Reaction Prediction Problem

A \rightarrow B: When we know the reactants and products, mature quantum chemistry tools exist to characterize transition states and establish pathways

A $\boldsymbol{\rightarrow}$? : For degradation reactions, plausible reactions are often unknown.

The Reaction Prediction Problem

A \rightarrow B: When we know the reactants and products, mature quantum chemistry tools exist to characterize transition states and establish pathways

A $\boldsymbol{\rightarrow}$? : For degradation reactions, plausible reactions are often unknown.

3-hydroperoxypropanal

Yet Another Reaction Program (YARP)

Idea: Turn the $\mathbf{A} \boldsymbol{\rightarrow}$? problem into tractable (and parallelizable) $\mathbf{A} \rightarrow \mathbf{B}$ problems.

Observations:

- Product enumeration is easier than transition state enumeration.
- Transition state algorithms for $A \rightarrow B$ problems are mature. Let the TS algorithm identify physical reactions.
- Recent developments in semi-empirical models and ML create opportunities.
- Solving the $\mathbf{A} \rightarrow$? problem is the prerequisite for reaction network prediction.

YARP: Elementary Reaction Step(s)

Polar and pericyclic organic reactions are decomposed into elementary electron donor and acceptor reactions with concomitant σ-bond breaks

YARP: Elementary Reaction Step(s)

Polar and pericyclic organic reactions are decomposed into elementary electron donor and acceptor reactions with concomitant σ-bond breaks

Form 1 Products

Lewis Structure

YARP: Elementary Reaction Step(s)

Polar and pericyclic organic reactions are decomposed into elementary electron donor and acceptor reactions with concomitant σ-bond breaks

Form 1 Products

Lewis Structure

Break 1 Form 1 Products

YARP: Elementary Reaction Step(s)

Polar and pericyclic organic reactions are decomposed into elementary electron donor and acceptor reactions with concomitant σ-bond breaks

All bnfn products are $\mathbf{b}(\mathrm{n}-1) \mathrm{f}(\mathrm{n}-1)$ decomposable

This means that using only "break 1 bond form 1 bond" (b1f1) for radicals and ions won't miss any products, but it will potentially miss important transition states (i.e., by predicting a sequential mechanism when a concerted mechanism is favored)

+28 others

Testing YARP on a Unimolecular Decomposition Problem

Testing YARP on a Unimolecular Decomposition Problem

Testing YARP on a Unimolecular Decomposition Problem

What Happens First?

Jensen, R. K.; Korcek, S.; Mahoney, L. R.; Zinbo, M. JACS 1979, 101, 7574

The Korcek Mechanism

According to YARP, this is the lowest barrier unimolecular reaction.

Fully resolved (along with subsequent ROOH and $\mathrm{R}=\mathrm{O}$ formation) 30 years later by Green and Truhlar: Jalan, A.; Alecu, I. M.; Meana-Pañeda, R.; Aguilera-Iparraguirre, J.; Yang, K. R.; Merchant, S. S.; Truhlar, D. G.; Green, W. H. JACS 2013, 135 (30), 11100-11114.

Reaction Network Case Study: β-D-Glucose Pyrolysis

Figure 1. Proposed pathways in literature from glucose to HMF, namely the fructose path (green), 3-DG paths (black and black dotted), and direct path (red). The molecules are indicated by numbers and some key molecules are named as follows: 1. D-glucose; 2. D-fructose; 3. D-fructofuranose; 6. 5-hydroxymethylfurfural (5-HMF); 7. 3-deoxyglucos-2-ene (3-DGE); 8. 3-deoxyglucosone (3-DG); and 10. hex-1-ene-1,2,3,4,5,6-hexaol (enol form of glucose).

β-D-Glucose Pyrolysis Network Exploration

At each iteration:
(1) all b2f2 reactions are explored for active nodes.
(2) Active nodes are determined by the minimum barrier to a given product (with a window)
(3) Water catalyzed reactions are considered for all Htransfers

β-D-Glucose Pyrolysis Network Exploration

To perform a deep network exploration, we've implemented a modified version of Dijkstra's algorithm

At each iteration:
(1) all b2f2 reactions are explored for active nodes.
(2) Active nodes are determined by the minimum barrier to a given product (with a window)
(3) Water catalyzed reactions are considered for all H transfers

β-D-Glucose Pyrolysis Network Exploration

To perform a deep network exploration, we've implemented a modified version of Dijkstra's algorithm

At each iteration:
(1) all b2f2 reactions are explored for active nodes.
(2) Active nodes are determined by the minimum barrier to a given product (with a window)
(3) Water catalyzed reactions are considered for all Htransfers

β-D-Glucose Pyrolysis Network Exploration

To perform a deep network exploration, we've implemented a modified version of Dijkstra's algorithm

At each iteration:

(1) all b2f2 reactions are explored for active nodes.
(2) Active nodes are determined by the minimum barrier to a given product (with a window)
(3) Water catalyzed reactions are considered for all Htransfers

β-D-Glucose Pyrolysis Network Exploration

To perform a deep network exploration, we've implemented a modified version of Dijkstra's algorithm

At each iteration:

(1) all b2f2 reactions are explored for active nodes.
(2) Active nodes are determined by the minimum barrier to a given product (with a window)
(3) Water catalyzed reactions are considered for all H transfers

β-D-Glucose Pyrolysis Network Exploration

To perform a deep network exploration, we've implemented a modified version of Dijkstra's algorithm

At each iteration:

(1) all b2f2 reactions are explored for active nodes.
(2) Active nodes are determined by the minimum barrier to a given product (with a window)
(3) Water catalyzed reactions are considered for all Htransfers

β-D-Glucose Pyrolysis Network Exploration

To perform a deep network exploration, we've implemented a modified version of Dijkstra's algorithm

At each iteration:

(1) all b2f2 reactions are explored for active nodes.
(2) Active nodes are determined by the minimum barrier to a given product (with a window)
(3) Water catalyzed reactions are considered for all Htransfers

β-D-Glucose Pyrolysis Network Exploration

To perform a deep network exploration, we've implemented a modified version of Dijkstra's algorithm

At each iteration:

(1) all b2f2 reactions are explored for active nodes.
(2) Active nodes are determined by the minimum barrier to a given product (with a window)
(3) Water catalyzed reactions are considered for all Htransfers

Studying Chemical Warfare Agents (CWAs) with YARP

Degradation products are often the only evidence of CWA use or existence. Establishing mechanistic pathways provides evidentiary value to investigators.

CWA type	Chemical agents	Method of exposure	Clinical symptoms	
Nerve agents	G-agents (sarin, cyclosarin, tabun, soman) V -agents (VE, VG, VM, VR, VX)	Inhalation	SLUDGE, miotic pupils, bradycardia, bronchospasm, bronchorrea, muscle spasms/fasciculations, weakness, flaccid paralysis, tachycardia, seizures, respiratory failure	
Blistering agents	Nitrogen mustard \& sulfur mustard (mustard gas)	Inhalation	Acute: Skin, eye and lung damage (pulmonary edema and pulmonary hemmorhage), erythematous rash, skin blistering Chronic: Lung damage (chronic obstructive pulmonary disease, asthma, bronchiolitis obliterans), neutropenia, pancytopenia	Mustard Gas (HB)
Asphyxiants	Carbon monoxide, chlorine, phosgene, hydrogen sulfide gases	Inhalation	Upper airway distress, skin and eye irritation, fatal pulmonary edema and acute respiratory distress syndrome	
Blood agents	Cyanide	Skin absorption, inhalation and ingestion	Severe distress, tachycardia, cyanosis, hypotension, severe metabolic acidosis, seizures, cardiac arrest	
Hydrofluoric acid	-	Skin absorption, inhalation and ingestion	Severe pain in exposed area, gastrointestinal distress, vomiting, cardiac arrhythmias, hypocalcemia, hyperkalemia	

YARP Prediction for Sulfur Mustard (HD) Reactivity

Mechanism of Action

Lowest barrier bimolecular reaction

Predicted Reactivity for Organophosphorus Nerve Agents

Outlook and Acknowledgements

Students: Qiyuan Zhao, Tyler Pasut, Michael Woulfe

State-of-the-art:

- The accurate calculation of thermodynamic properties has become routine in many scenarios. Major opportunities lie in automation, systemization, and low-cost models.
- Practical solutions to the $A \rightarrow$? $\rightarrow B$, $A \rightarrow B+$?, and $A \rightarrow$? problems are now available. We envision black-box tools for non-experts in the near future that will assist in hypothesis generation and potentially reactivity screening.

- P2SAC and ONR for funding.
- Ray Mentzer (Purdue)
- Spencer Goldrich(PMP)

Purdue Process Safety \& Assurance Center

