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Tutorial Goals

* Why are we interested in electrochemical synthesis of
chemicals?

* Identify key advantages and opportunities for E-chem
synthesis

e What are the basic elements of an electrochemical
reaction?

e Describe components needed for E-chem synthesis

 How do we leverage electrochemistry to produce
chemicals in continuous flow reactors?

* Implement standard methodology for designing
E-chem flow reactors

Cathode
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Why are we interested in E-chem synthesis?

Industrial organic syntheses are often
hazardous 0

Case Study: Ethylene Oxide Synthesis f E

* Route 1: Direct Oxidation

 C,H, +0, > C,H,0 + CO,
(from over-oxidation/gas compression)

¢ ~10% single pass conversion @ 200 — 260 C,
~20 bar

* Higher T, above flammability limit

* Route 2: Chlorohydrin Process

° C2H4+C|2+H20 > H-Dwm

H"O~~"~ Ca(OH), > C,H,0 + CaCl, + H,0
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Why are we interested in E-chem synthesis?

Industrial organic syntheses are often —p E-chem synthesis provides
hazardous o unique advantages e
Case Study: Ethylene Oxide Synthesis i E
2CI — +H0 i
HI
e Cl, mediator is generated electrochemically at an electrode by X 41
electron transfer from aqueous Cl- salt cl, &

* No bulk Cl, handling or processing

* Cl, and H,0 transform ethylene to EO in the same manner as
chlorohydrin process

* Resulting Cl-ions are recycled and reinitiated as mediators

Cathode

* No stoichiometric waste

* Occurs@90C

* No explosion hazard
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Why are we interested in E-chem synthesis?

Industrial organic syntheses are often —p E-chem synthesis provides
hazardous unique advantages e
General Advantages of Electron-Driven Reactions
2CI — +H0
 Driving force for chemical reaction = electrochemical ,H‘,
potential (i.e. voltage) 0
Cl, X
* Facilitates ambient T processes

* Enables finer selectivity control

* Electrodes are versatile

* Generate redox mediators in-situ

Cathode

* Catalyze reaction directly (enhance activity/selectivity)

These enable selective reactions that can mitigate
hazards and facilitate new synthetic pathways
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What are components of E-chem rxn?

Three basic elements of an electrochemical reaction:
2CI > Cly () + 2€

1. Molecular transformation where an electron (e’) is a
reactant or a product

2. Inherently heterogeneous process with at least 2 phases

* Electron conducting phase (electrode)

* lon conducting phase (electrolyte)

Electrode Electrolyte

3. Contains 2 electrodes to maintain electroneutrality
*  One for reduction half reaction (cathode)

*  One for oxidation half reaction (anode)

Oxidation Reduction
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How do we design E-chem reactors?

Translating Chemistry € Electrochemistry:

4 F = 96485 C/(mol e): )
C AGyx ,
* Voltage/Potential is energy > Veen = —— amount of charge in 1 mol e
> n:(#mole)/(mol product)
( CU rrent iS reaCtion rate 9 i —_ nTr » :rxn rate [mol m-2 S'l] )

(Electro)Chemical Reaction Engineering:

1.

e Wil

Mole Balance/Reactor Design Equation

Rate Law

Stoichiometry

Combine

Evaluate (determine critical reactor parameters: volume, concentration, flow rate,

conversion, temperature, etc)
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How do we design E-chem reactors?

Mole Balance / Reactor Design Equation:

_ . Apply this to any
[ In - Out + Gen. = Accumulation ]—reactortype
*Assume perfect mixing (r,the same
Ex) Continuous Stirred Tank Reactor (CSTR): A> B+ C everywhere)
FAo i FA + 'y * _ 0 Assume steady state (no accum.)

Faq [mol A/ s] _l / V = Fao — Fa

! -

Reactor volume: V [m3]

F\ [mol A/ s]
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How do we design E-chem reactors?

Mole Balance / Reactor Design Equation:

_ . Apply this to any
[ In - Out + Gen = Accumulation ]—reactortype
*Assume perfect mixing

Ex) Electrochemical Continuous Stirred Tank Reactor (CSTR): A+e > B+ C *Assume steady state (no accum.)

E E ’ % _ *Assume uniform rate across S

AO - A + r,y,*s = 0

Fag [mol A/ s] I /
| 1Y/ g — Fao —Fa  (Fao — Fa)nF

—I A l

Electrode surface area: S [m?] Reactor volume: V [m?]
*rxn only occurs on surface of electrode,
so we normalize rate by surface area,

rather than volume
F\ [mol A/ s]
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How do we design E-chem reactors?

Mole Balance / Reactor Design Equation:

Concentric Cylinder

Chem
dCp LS

Fao — F
N dx nFLy,

Plug Flow Reactor -—»O )-—» d& =1, y'x"

(PFR) dVv Parallel Plate

dCy  iS
dx nFLv,

@ PURDUE Davidson School of
Chemical Engineering

UNIVERSITY.



How do we design E-chem reactors?

Translating Chemistry € Electrochemistry:

4 F = 96485 C/(mol e): )
C AGyx ,
* Voltage/Potential is energy > Veen = —— amount of charge in 1 mol e
> n:(#mole)/(mol product)
( CU rrent iS reaCtion rate 9 i —_ nTr » :rxn rate [mol m-2 S'l] )

(Electro)Chemical Reaction Engineering:

1.

e WN

Mole Balance/Reactor Design Equation

Rate Law ——> Thijsis how we relate current to voltage

Stoichiometry

Combine

Evaluate (determine critical reactor parameters: volume, concentration, flow rate,

conversion, temperature, etc)
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How do we design E-chem reactors?

Rate Law:
Chem: x E-Chem: x Mass-transfer limited:
rate is exponential function of T rate is exponential function of V rate is linear function of C,
( ) 4 ) ("
r= kCAOf i/(nF) =r=kC,® i/(nF)=r=kC,
Arrhenius: Tafel: MT coeff.:
Ea o, FV D
k=Aex [—— [ = in €X [a ] k. =—
PI7RT 0 €XP |~ =73
1T Voltage Ca
\_ J \_ J .
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How do we design E-chem reactors?

Translating Chemistry € Electrochemistry:

F =96485 C/(mol e):
amount of charge in 1 mol e

4 o AGry
* Voltage/Potential is energy 2 Vee = ——

> n:(#mole)/(mol product)

e Current is reaction rate - I = nFr ~ e e el i e

g

(Electro)Chemical Reaction Engineering:

1.

VAW

Mole Balance/Reactor Design Equation

Rate Law

Stoichiometry

Combine ——> This is where we set up solvable equations

Evaluate (determine critical reactor parameters: volume, concentration, flow rate,

conversion, temperature, etc)
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How do we design E-chem reactors?

Combine: Fao [mol A/s]

Electrode surface area: S [m? Reactor volume: V [m3]

Ex) Echem CSTR operating under “mass-transfer
. oy e ” oy e
I Im Itl ng Con d Itl O n S *rxn only occurs on surface of electrode,
so we normalize rate by surface area,

(Z rather than volume
MB:

S — (Fao—Fa)nF T@ 6@(/!/\9:0&»( Q}-[:‘(Q f{@ N -(-e)/'y,,9 0\0_

FA [mol A / 5]
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How do we design E-chem reactors?

Translating Chemistry € Electrochemistry:

4 F = 96485 C/(mol e): )
C AGyx ,
* Voltage/Potential is energy > Veen = —— amount of charge in 1 mol e
> n:(#mole)/(mol product)
( CU rrent iS reaCtion rate 9 i —_ nTr » :rxn rate [mol m-2 S'l] )

(Electro)Chemical Reaction Engineering:

1.

ik wnN

Mole Balance/Reactor Design Equation

Rate Law

Stoichiometry

Combine

Evaluate (determine critical reactor parameters: volume, concentration, flow rate,

conversion, temperature, etc)
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How do we design E-chem reactors?

Evaluate: Cao

Ex) How many Echem CSTRs in series are needed to
achieve >99% conversion if each operates under mass
transfer limiting current? What is the current of each

reactor?

83 x10-5™
vy = 8.3 X 10 . “Qa&' QML/ J\Qﬂé(y_

Cqo = 100 ppm

—_qm Al =
ke =1.62x 1072 Cone] A

N

MW = 65 To e, O e Sef 25

mole™

n =

Cho G L‘A—W’I

mol A é-A—y\ —9/\ OCAV-;I 1 \._Ck

L =

Cho

Aox ﬁgufoue Lot e & ﬁg/g(/-)

l

‘ _
ﬁd +-3~;¥.A (1

2

E PURDUE | vavidson schoolof

Chemical Engineering

UNIVERSITY.



How do we design E-chem reactors?

Evaluate: Cao

Ex) How many Echem CSTRs in series are needed to
achieve >99% conversion if each operates under mass
transfer limiting current? What is the current of each

reactor?

1
v0=8.3><10_5mT3 —CO(— )< - O.Cf% l laéOOB /
i e ool = R DN k@ 38
ke =1.62x 1077 C o >
MW, = 65-"

n=2 ",;O(fle,;m #é Naech L ;Mac:‘af S (

Chemical Engineering
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How do we design E-chem reactors?

Evaluate: Cao

Ex) How many Echem CSTRs in series are needed to
achieve >99% conversion if each operates under mass
transfer limiting current? What is the current of each

reactor? 1 2
e obta'v Z Lor eec(/\/ MCJ(

CAl

3
vy =83 %1075
S

Ca0 = 100 ppm L _ Cro
SAi 1.7 mzpp NE = \4(. ('A/\/ w’/w\L CA, — ([+_§_ \Qy\
ke =1.62x 1072 U Uo
MW, = 65% /‘, / n C,. [mol/m3]| i[A/m?]
n = pmote n 1 0.358 11.2
mot 4 2 0.0832 2.60
3 0.0194 0.60
N 4 0.0045 0.14
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Tutorial Goals

Why are we interested in electrochemical synthesis of
chemicals?

* Identify key advantages and opportunities for E-chem
synthesis

e What are the basic elements of an electrochemical
reaction?

e Describe components needed for E-chem synthesis

 How do we leverage electrochemistry to produce
chemicals in continuous flow reactors?

* Implement standard methodology for designing
E-chem flow reactors

Cathode

* When do you reach out to the Tackett Research Group to
help improve your E-chem system?
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Tackett Research Group

* Qur lab has a unique combination of characterization
techniques that enable fundamental study of a wide array

of electron-driven chemical reactions

What is the E-chem rate law/mechanism?

Is the reaction MT-limited?

[ Electrochemical Mass Spectrometer (EC-MS)

N

0 .
. 1bar(g) =
.

ot
ToMS ¢
* .
10° mbar (g) *

* Fast (~1 s) and sensitive (100% product collection)
gaseous product analysis
« Inert or reactive gas dosing capabilities

Surface Enhanced Infrared Absorption
Spectroscopy (SEIRAS)

pH-Sensing Rotating Ring Disk ]
Electrode (RRDE)

Evanescent
Wave
Film
Electrode
IR Window
IR Beam

Plasmon-enhanced vibrational spectroscopy captures
near-surface signals
Compatible with deposited film electrodes

- | . y=-00578x +0.7632

Current (mA)

abhuhisoanw
C

- - - before oxidation e>021
—after oxidation & 01

RRDE system provides well-defined hydrodynamics for
accurate reaction-convection-diffusion model
IrO, functionalized ring is a fast, robust pH sensor
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Tackett Research Group

* Qur lab has a unique combination of characterization
techniques that enable fundamental study of a wide array

Conducting Polymer Coating

Nanometers

10 Micrometers

Electrocatalyst Atomic Binding Sites

. . . Porous PTFE Layer - e ¢ :
of electron-driven chemical reactions O > € 0g 200
Alkane —": o f  S] }g @\;{) o IJIJ
oS W | | = r )
* Our department has collaborative and complementary ‘ JJ T 777 ;‘fjJ
Electrocatalyst Layer -

faculty that enable multi-scale electrochemical reactor Water

studies ( DQ

Optimize Mass Transport at Design Active and Develop Atomic
Gas-Solid-Liquid Interface Selective Electrocatalysts Descriptors

- Conductive - Fundamental kinetics - DFT-calculated
hydrophobic PTFE - Electrocatalyst design database
- GDL physical properties - Continuous flow cell - Data science discovery

performance

How could the product yield be improved?

WINDOW

Electrocatalytic ~ Alkane » ———=—~———* Products —p
Reactor Gas Products %EGDL

N

Electrolyte —» ADH e-cat — —)

S
R

Fundamental Scientific Insights for Aqueous Electrocatalytic
Alkane Dehydrogenation from Nano-Scale to Device-Scale
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