

Batteries: Fundamentals, Recent Advances, and Inherent Safety Aspects

Vilas G. Pol

vpol@purdue.edu

https://engineering.purdue.edu/ViPER/pol.html

Lithium

Research Areas

Lithium-ion **Sodium ion**

Potassium ion

Li-S/Solid state

Flow

260+ Publications; H index 55, 150+ invited talks 19 issued US patents, 20+ pending, 40+ awards

Types of Energy Storage

Rechargeable **Batteries**

Mechanical

Pumped Hydro

Thermal T. Bauer, 2012

Molten Salt

Discharge Time	1 min – 8h	4-16h	hours
Lifetime	1,000 - 10,000	30-60 years	30 years
Energy Density (Wh/L)	200-400	0.2-2	70-200
Efficiency	85-95%	70-85%	80-90%
Cost	High	Low	Low

Classes of battery

Primary vs. Secondary Batteries

- Cell reaction is irreversible
- Must be discarded after use
- Have relatively short shelf life
- They cannot be used as storage devices
- Can not be recharged
- e.g. Dry cell.

- Cell reaction is reversible
- May be recharged
- Have long shelf life
- They can be used as energy storage devices
- They can be recharged.
- e.g.Li-MnO₂battery, Lead acid, Ni-Cd battery.

Standard Modern Primary Batteries

• Zinc-Carbon: used in all inexpensive AA, C and D dry-cell batteries. The electrodes are zinc and MnO₂-carbon, with an acidic paste between them that serves as the electrolyte. (disposable)

 Alkaline: used in common Duracell and Energizer batteries, the electrodes are zinc and manganeseoxide, with an alkaline electrolyte (KOH).

$$\begin{split} Zn_{(s)} + 2OH^{-}_{(aq)} &\to ZnO_{(s)} + H_2O_{(l)} + 2e^{-} \left[e^{\circ} = 1.28 \text{ V} \right] \\ 2MnO_{2(s)} + H_2O_{(l)} + 2e^{-} &\to Mn_2O_{3(s)} + 2OH^{-}_{(aq)} \left[e^{\circ} = +0.15 \text{ V} \right] \end{split}$$

Overall reaction:

$$Zn_{(s)} + 2MnO_{2(s)} \rightarrow ZnO_{(s)} + Mn_2O_{3(s)} [e^{\circ} = 1.43 \text{ V}]$$

CANNOT BE RECHARGED

Theoretical Capacity of Materials

■ From Faraday's 1st Law of Electrochemistry

$$1Q = [6.241 \times 10^{18} \text{ electrons}]$$

■ 1 gm. equivalent wt. of materials will deliver 96487 Coulombs

Thus, 96487 / 3600 = 26.8 Ah

At # of C is $6 \times 2 = 12$ (atomic mass)

Forming LiC₆ structure $6 \times 12 = 72$

- Theoretical specific capacity of Grapnite
 - = 26.8/72
- = 0.372 Ah/g
- = 372 mAh/g

Existing Battery Types

Ragone Plot

Higher power and energy are driving the Li Ion battery growth

Specific energy is the total energy a battery can deliver in watt-hours per kilogram (Wh/kg)

Specific power is the battery's ability to deliver power in watts per kilogram (W/kg).

History of Li-ion batteries

1970: M. S. Whittingham – Proposed Li ion battery (SUNY, USA).

1980 : J. Goodenough - Layered LiCoO₂ material as cathode (Oxford University, Now at UT)

1991: SONY Commercialized Li ion battery (LiCoQ2 as cathode, Japan).

Chevrolet Volt (GM)

EV Range: 50 miles per charge Battery Type: 16kW.h Lithium Ion

Cost of Battery: \$11,000

Currently, >90 % of Li-ion cells are manufactured in Japan, Korea, China

We are not trading our dependence on foreign oil to a dependence on foreign batteries

How many batteries are required to run your EV?

A 90 kWh battery built with Panasonic 3.4 Ah 18650 *cells* will require about 9000 cells

18650

Lithium ion Batteries are Everywhere!

MARKET

\$33 BN

MARKET VALUE

CAGR (2019-25) 11%

>\$73 BN

Li-ionBattery Research Challenges

Cost

Current projected cost (25 kW battery) ~ \$1000

- Target cost (25 kW battery) ~ \$500

New

Safety

Inherently safe batteries needed

- Overcharge protection circuitry expensive

Life

Current technology ~ 5 to 10 years

- Target ~ 15 years

Low Temperature Performance

Current technology ~ Sluggish < 0 °C

- Target ~ -30 °C (cold cranking)

Safety Concerns of Lithium-ion Batteries

Boeing 787, Dec. 2014 (1)

Tesla Model S, Aug. 2016 (2)

Samsung Note 7, Sept. 2016 (3)

- LIBs dominate rechargeable energy storage market due to high energy density
- Safety incidents still occurring for mature Li-ion battery technology
- Susceptible to thermal runaway: can occur by overcharging, cell puncture, dendrites

Motivation: Improve understanding of thermal runaway and how to mitigate for rechargeable battery

- (1)https://www.scientificamerican.com/article/how-lithium-ion-batteries-grounded-the-dreamliner/
- (2)https://electrek.co/2016/08/15/tesla-model-s-catches-fire-test-drive-france/
- (3)http://www.cbsnews.com/news/samsung-galaxy-note-7-batteries-fires-faa-warnings-passengers-worldwide-rec

Need: High safety, high energy density solid-state Li metal batteries required for electric vehicles, electronics and defense applications

Li metal: 3840 mAh/g

Li-ion battery with liquid electrolytes

Energy density ~ 250 Wh/kg

Solid-state

Cutting Punching

Energy density ~ 450 Wh/kg

Purdue's Advanced Solid-state Battery Technology

Purdue's Generation I

Chemical Engineering Journal 400 (2020) 125996

Contents lists available at ScienceDirect

Chemical Engineering Journal

Room-temperature, high-voltage solid-state lithium battery with composite solid polymer electrolyte with *in-situ* thermal safety study

Sensen Zhang^{a,b,1}, Zheng Li^{b,1}, Yue Guo^{c,d}, Lirong Cai^b, Palanisamy Manikandan^b, Kejie Zhao^c, Ying Li^{a,*}, Vilas G. Pol^{b,*}

^a School of Metallurgy, Northeastern University, Shenyang 110819, China

b Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA

c School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA

d School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China

Scalable Fabrication of SS Composite Electrolyte

PVDF – Polymer Matrix; LiTFSI – Li salt; LLZTO – ceramic nanoparticles

Pictures of as-prepared composite solid polymer electrolyte

Ionic Conductivity, Voltage Window, Thermal Stability

- ✓ High room-temperature ionic conductivity (2.4×10⁻⁴ S cm⁻¹)
- ✓ Wide voltage window (~ 4.8 V)
- ✓ Excellent thermal stability (~ 330 °C)

VS

- ➤ Low room-temperature ionic conductivity (10⁻⁷ -10⁻⁵ S cm⁻¹)
- **×** Narrow voltage window (∼ 3.8 V)
- **×** Inferior thermal stability (~ 230 °C)

Purdue's Composite solid polymer electrolyte

Typical PEO-based polymer electrolyte

Li|CSPE-5|Li symmetric cell

Rate studies

Long-term cycling stability of the LFP|Li cell using CSPE-0 and CSPE-5

✓ Purdue's Gen. I Composite solid polymer electrolyte does have stability once combines polymer, ionic conductor, salt etc. with remaining solvent DMF

Electrochemical Performance of Solid-state Full Cell

✓ Purdue's Gen I composite solid polymer electrolyte does work with various cathodes

Thermal Stability

Commercial PP separator

Purdue's CSPE

Schematic of multiple module calorimeter

- Different from DSC and ARC
- MMC can in-situ investigate the thermal behavior of an entire coin cell instead of individual components

Thermal Safety Performance

Thermal stable window:

Heat generation:

VS

Purdue's Generation II:

Fire retardant molecule as solvent and plasticizer

Exothermic heat measurements - MMC

Conventional

Quasi-solid state

A scalable quasi-solid state battery

Anode shell

Li metal anode

Purdue's CSPE

Cathode

Cathode shell

Small scale coin cell

Large scale, single-layer pouch cell

Abuse testing with functionality

Apart from various abuse tests still functional

Article

https://doi.org/10.1038/s41467-023-36647-1

Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries

Received: 21 July 2022

Accepted: 10 February 2023

Published online: 16 February 2023

Check for updates

Zheng Li 🗖¹ ⋈, Harsha Rao¹, Rasha Atwi², Bhuvaneswari M. Sivakumar³, Bharat Gwalani 🐧³,⁴, Scott Gray⁵, Kee Sung Han 🐧³,⁴, Thomas A. Everett 📵⁶, Tanvi A. Ajantiwalay³, Vijayakumar Murugesan 🐧³,⁴, Nav Nidhi Rajput² & Vilas G. Pol 🐧 ⋈

The electrochemical instability of ether-based electrolyte solutions hinders their practical applications in high-voltage Li metal batteries. To circumvent this issue, here, we propose a dilution strategy to lose the Li⁺/solvent interaction and use the dilute non-aqueous electrolyte solution in high-voltage lithium metal batteries. We demonstrate that in a non-polar dipropyl ether (DPE)-based electrolyte solution with lithium bis(fluorosulfonyl) imide salt, the decomposition order of solvated species can be adjusted to promote the Li*/salt-derived anion clusters decomposition over free ether solvent molecules. This selective mechanism favors the formation of a robust cathode electrolyte interphase (CEI) and a solvent-deficient electric double-layer structure at the positive electrode interface. When the DPE-based electrolyte is tested in combination with a Li metal negative electrode (50 µm thick) and a LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂-based positive electrode (3.3 mAh/cm²) in pouch cell configuration at 25 °C, a specific discharge capacity retention of about 74% after 150 cycles (0.33 and 1 mA/cm² charge and discharge, respectively) is obtained.

Solvation structure-dependent stability

Ethers are inherently more stable on Li metal surface, which enables higher cycling efficiency than carbonates. However, they are extremely unstable at high operating potential

✓ Modulating the solvating power of ether solvents is hypothesized to change the interfacial stability via selectively forming a protective anion-derived CEI and kinetically stabilized the interface, because the solvation structure controlled by solvent strength governs the electrolyte decomposition pathways and the CEI composition.

Long cycle performance in Practical LMBs

Coin cell with controlled amount of anode and electrolyte

300 mAh pouch cell performance

Compatibility to Li metal anode:

• High coulombic efficiency of 99.5% over 300 cycles

• Dense Li depositing morphology

Low Temperature Battery Applications

• Space, defense, daily life applications of lithium-ion batteries

Major Two Challenges in Current Systems

• Electrolyte freezing and sluggish Li⁺ reaction kinetics originated from high melting point and Li⁺ desolvation barrier of ethylene carbonate (EC).

Battery evaluation system issue

Several limitations to test batteries below -70 °C with commercially available chambers and battery cyclers.

Solution to Electrolyte Issues

Approach 1 - Cyclopentyl Methyl Ether (CPME) based WSE

Approach 2 - Tetrahydrofuran (THF) based SCE

Solution to Battery evaluation system issue

Purdue's Ultra Low Temperature Test Facility

3 cm x 3 cm Pouch cell

Limitations for Low Temperature Battery Testing

Expensive infrastructure is required

It is difficult to create a cooling system capable of -100 °C or below without LN_2 . Commercial systems has high LN_2 consumption rates (6 to 30 L hr⁻¹).

Resistance issue on commercial cell holder at low temperature

Arbin battery cycler cell holders are only rated to operate down the -20 °C with negligible resistance change.

Purdue's Ultra Low Temperature Test Capability

Affordable cost and accurate/reliable electrical measurement

- Available temperature → Up to -175 °C, Simulating extremely cold temperature environment (Lunar, Space, High Altitude, and Polar regions)
- Efficient LN₂ flow to minimize LN₂ usage (0.63 L hr⁻¹),
- Suppressed frost buildup by Ar purging Pol et al, Energy Technol., 2022 2200799.

Approach 1- Cyclopentyl Methyl Ether (CPME) based WSE

- CPME (B.P: 106 °C and M.P: -140 °C)
- High solubility of the salt (7M)
- Environmentally safe and economically feasible CPME solvent
- Unique solvation structure consisting of CIPs and AGGs
- AGG-I → An FSI⁻ bonded with 2 Li⁺,
 AGG-II → An FSI⁻ bonded with 3 Li⁺

Pol et al. Chem. Commun. 2022, 58, 5124

-100 °C Tests (NbWO | |Li)

-100 °C (C/30) test (0.8-3.0V)

-100 °C tests with 1.0-CPME

- 1.0-CPME
 - → Good low-temperature performance (graphite anode)
 - → Charge-discharge ability at -100 °C with a small capacity and extremely slow current rate

7 cm* 7cm 290 mAh

- Finally, NbWO with 1.0-CPME achieved >75 mAh g⁻¹ at C/30.
 - → Much improved extreme low-temperature battery performance

1.0-CPME electrolyte (1M LiFSI in CPME)

CPME: cyclopentyl methyl ether (-140 °C)

Summary

- 1. Engineered composite quasi-solid state batteries could be safer than conventional Lithium ion batteries.
- 2. Gen III are towards making quasi-solid state battery that would not catch fire with any abuse!
- 3. Li-metal batteries are safe till 150 °C, separator and lithium metal melts after that causing huge exothermic heat.
- 3. Lithium metal batteries are VERY promising with DPE based electrolyte

