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Lithium-ion battery – multi-scale problem 

*Mukherjee, Pannala, Turner, Handbook of Battery Materials (2011); Lithium Power Conference (2011). 
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Heterogeneity and stochasticity at scales

Safety & 
degradation 

Physics-based 
analytics 
(modeling & 
experiments) 
at scales

*Mistry, Smith and Mukherjee, ACS Applied Materials and Interfaces 10, 28644 (2018)



Electrode heterogeneity at scales

*Mistry, Smith and Mukherjee, ACS Applied Materials and Interfaces 10, 28644 (2018)
*Tomography data from Ebner et al., Advanced Energy Materials 3, 845 (2013)



Electrode stochasticity map→ nonuniform fields
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*Mistry, Mukherjee et al., Journal of The Electrochemical Society, 167, 090542 (2020)
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Mass balance at particle surface:

Ionic flux (electrolyte) ~ Diffusive flux 
(particle)

Reactive transport: nominal operating 
condition 

Reactive transport: operational extremes

𝑳𝒊+ + 𝒆− ⇌ 𝑳𝒊

Mass balance at particle surface:

Ionic flux (electrolyte) > Diffusive flux 
(particle)
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Interfacial reactive transport interactions
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Implications:

➢ Fast Charging of lithium-ion batteries
➢  Low-temperature operation

Interfacial

Reaction

Ionic

Transport 
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temperature rise

Electrochemical – thermal – chemical interactions

*Q

*Mistry, Smith and Mukherjee, ACS Applied Materials and Interfaces 10, 28644 (2018)
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Sustainable mobility solutions: rise of eVTOLs

*Ayyaswamy, Vishnugopi and Mukherjee, Joule, 7(9), 2016 (2023).  

10℃ 25℃ 40℃

Electric vertical take-off 
and landing (eVTOL) aircrafts

*https://www.volocopter.com/solution
s/

Variation in ambient environment

Typical eVTOL mission scenario

*https://www.jobyaviation.com/
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Thermal safety considerations in eVTOLs

After mission phases After balked phases

▪ Morphological differences in electrodes can deliver asymmetrical temperature 
response under eVTOL operation.

▪ Safety analysis of eVTOL batteries must always exercise inclusion of 
emergency balked phases, since they exhibit highest cell temperatures during 
any mission.
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Degradation under operational extremes

3-electrode analytics

-5oC 40oC

*Rangarajan, Mukherjee et al., Cell Reports Physical Science, 3, 100720 (2022).

*Rangarajan, Mukherjee et al., ACS Omega, 6, 33284 (2021)



11*Rangarajan, Mukherjee et al., Cell Reports Physical Science, 3, 100720 (2022) 

Mechanistic interactions: temperature-degradation-safety



Cell Aging Characteristics: Temperature dependence    

Quantification of aging parameters: Electrochemical aging framework

12*Kabra, Karmakar, Vishnugopi, Mukherjee, Energy Storage Materials (accepted), 2024.



Exothermic Reactions Mechanisms of Fresh/Aged Cells  

Progression of Thermal Runaway in an aged Li-ion Cell
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ARC Thermal Signatures of Fresh/Aged Cells  
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Thermal Runaway: Model Validation 

Energy Equation:  𝑀𝑐𝑒𝑙𝑙𝐶𝑝,𝑐𝑒𝑙𝑙

𝑑𝑇𝑐𝑒𝑙𝑙

𝑑𝑡
= ሶ𝑄𝑔𝑒𝑛 − ℎ𝐴𝑅𝐶𝑆𝑐𝑒𝑙𝑙 𝑇𝑐𝑒𝑙𝑙 − 𝑇𝐴𝑅𝐶

Virtual ARC simulations of Fresh/Aged Cells

Temperature Verification Temperature Rate Verification 
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*Kabra, Karmakar, Vishnugopi, Mukherjee, Energy Storage Materials (accepted), 2024.



Insights from ARC Thermal Runaway Model  

Heat Generation Characteristics from Exothermic Reactions

16*Kabra, Karmakar, Vishnugopi, Mukherjee, Energy Storage Materials (accepted), 2024.



Thermal stability: fresh & aged Cells 

17*Kabra, Karmakar, Vishnugopi, Mukherjee, Energy Storage Materials (accepted), 2024.



Thermal runaway propagation (TRP) characteristics

Corner Cell 9 Trigger, 

ሶQinput = 10W

NO TRP

TRP 

Sequence B

TRP 

Sequence A

Effect of trigger 

cell location

TRP Sequence A

C9→C6→C3→C2→C5

→C8→C1→C4→C7Trigger 

Cell

TRP Sequence B

C9→C6→C8→C3→C5

→C2→C4→C7→C1
Trigger Cell

*Karmakar, Mukherjee et al., Energy Technology, 12 (2), 2300707  (2022).

*Karmakar, Mukherjee et al., Journal of The Electrochemical Society, 171, 010529 (2024).
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Opportunities for Li metal chemistry

Solid-state batteryLithium-ion battery

Cathode CathodeAnode Metal anode

wgrav

+40%

*Janek and Zeier, Nature Energy, 2016, 1, 1 (2016).*Lin et al., Nature nanotechnology, 12, 194 (2017).
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Why do we need to evaluate solid-state battery safety?

Lithium anode

Solid electrolyte

Cathode active material 

Solid electrolyte 

Solid-state cathode with 
fast charge capability 

Thin separator for high 
energy density 

Li anode for high energy/power 
density 

Challenge: large heat generation, 
oxygen liberation from cathode 

Challenge: short-circuit (e.g., filaments)

Challenge: high reactivity, low melting 
point 
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Solid electrolyte/lithium interface

Ionically conductive Mixed ionic/electronic 
conducting

(1) In the pristine state, does the solid electrolyte/Li-metal interface undergo 
thermal runaway? 

(2) Do degradation mechanisms at the solid-solid interface (e.g., interphase 
growth) alter the thermal stability? 

Hypothesis: fundamental correlation between electrochemical interactions

and thermal stability 

*Vishnugopi, Hasan, Zhou and Mukherjee, ACS Energy Lett., 8, 398 (2023).



Electrochemical signature: interphase 

Li/LSPS (Li10SnP2S12)/Li 

Li/LPS (Li3PS4)/Li 

Current density: 0.1 mA/cm2 ; total capacity: 10 mAh/cm2
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Thermal stability: solid electrolyte-anode interface 

Self-heating rateThermal signature:  Li-Li3PS4 (LPS)-Li

pristine 

cycled

pristine

cycled

LPS

lithium 

Non-progressive interphase 

(at the LPS/Li interface) 
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Thermal stability: interphase effect

Self-heating rateThermal signature:  Li-Li10SnP2S12 (LSPS)-Li

pristine 

cycled

▪  Progressive interphase growth - mixed ionic/electronic conducting

▪ Fundamental correlation between the solid-solid interphase/interface 
dynamics and thermal stability? 

*Vishnugopi, Hasan, Zhou and Mukherjee, ACS Energy Lett., 8, 398 (2023).
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Li-ion & solid-state battery cell: safety comparison

T1 – onset for self-heating

T2 – thermal runaway onset 

T3 – maximum temperature 

t2- t1 – time interval between T1 and T2 

(dT/dt)m – maximum rate of temperature rise 



Summary & Outlook
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Interface 
stability

Interphase  

Kinetics & 
Transport

Thermal 
Stability

Non-flammability of the solid electrolyte does not imply thermal stability. 
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THANK YOU!

THE END

                          for now…
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