



Energy and Transport Sciences Laboratory

# Mechanistic Understanding of Battery Safety

#### Bairav S. Vishnugopi, Partha P. Mukherjee

Energy and Transport Sciences Laboratory (ETSL) School of Mechanical Engineering Purdue University, West Lafayette, IN, USA bvishnug@purdue.edu, pmukherjee@purdue.edu https://engineering.purdue.edu/ETSL/

P2SAC Fall 2024 Conference

December 4, 2024

# Lithium-ion battery – multi-scale problem



\*Mukherjee, Pannala, Turner, Handbook of Battery Materials (2011); Lithium Power Conference (2011).

# Heterogeneity and stochasticity at scales



\*Mistry, Smith and Mukherjee, ACS Applied Materials and Interfaces 10, 28644 (2018)

Safety & degradation

Physics-based analytics (modeling & experiments) at scales

# Electrode heterogeneity at scales



\*Mistry, Smith and Mukherjee, *ACS Applied Materials and Interfaces* 10, 28644 (2018) \*Tomography data from Ebner *et al., Advanced Energy Materials* 3, 845 (2013)

# Electrode stochasticity map $\rightarrow$ nonuniform fields



\*Mistry, Mukherjee et al., Journal of The Electrochemical Society, 167, 090542 (2020)

# Interfacial reactive transport interactions

Reactive transport: nominal operating condition



Mass balance at particle surface:

Ionic flux (electrolyte) ~ Diffusive flux (particle)

Implications:

- Fast Charging of lithium-ion batteries
- Low-temperature operation

Reactive transport: operational extremes



Mass balance at particle surface: Ionic flux (electrolyte) > Diffusive flux (particle)

# Electrochemical – thermal – chemical interactions



\*Mistry, Smith and Mukherjee, ACS Applied Materials and Interfaces 10, 28644 (2018)

# Sustainable mobility solutions: rise of eVTOLs

*Electric vertical take-off* Variation in ambient environment and landing (eVTOL) aircrafts 4000 3000 Altitude (m) 2000 1000 \*https://www.volocopter.com/solution \*https://www.jobyaviation.com/ 10°C 25°C 0 -20 20 40 0 Ambient temperature (° C) Typical eVTOL mission scenario Low C-rate (0.5C - 1.5C)Balked phase Cruise Descent Ascent Cruise altitude 1500 ft High C-rate Takeoff Landing (2C - 4.5C)

s/

<sup>\*</sup>Ayyaswamy, Vishnugopi and Mukherjee, Joule, 7(9), 2016 (2023).

# Thermal safety considerations in eVTOLs



- Morphological differences in electrodes can deliver asymmetrical temperature response under eVTOL operation.
- Safety analysis of eVTOL batteries must always exercise inclusion of emergency balked phases, since they exhibit highest cell temperatures during any mission.

## Degradation under operational extremes



\*Rangarajan, Mukherjee et al., Cell Reports Physical Science, 3, 100720 (2022).

\*Rangarajan, Mukherjee et al., ACS Omega, 6, 33284 (2021)

### Mechanistic interactions: temperature-degradation-safety



# **Cell Aging Characteristics: Temperature dependence**



Quantification of aging parameters: Electrochemical aging framework



\*Kabra, Karmakar, Vishnugopi, Mukherjee, Energy Storage Materials (accepted), 2024.

# **Exothermic Reactions Mechanisms of Fresh/Aged Cells**

Progression of Thermal Runaway in an aged Li-ion Cell



# ARC Thermal Signatures of Fresh/Aged Cells



# **Thermal Runaway: Model Validation**

Virtual ARC simulations of Fresh/Aged Cells

Energy Equation: 
$$M_{cell}C_{p,cell}\frac{dT_{cell}}{dt} = \dot{Q}_{gen} - h_{ARC}S_{cell}[T_{cell} - T_{ARC}]$$

#### **Temperature Verification**

#### **Temperature Rate Verification**



\*Kabra, Karmakar, Vishnugopi, Mukherjee, *Energy Storage Materials* (accepted), 2024.

# Insights from ARC Thermal Runaway Model

Heat Generation Characteristics from Exothermic Reactions



\*Kabra, Karmakar, Vishnugopi, Mukherjee, *Energy Storage Materials* (accepted), 2024.

# Thermal stability: fresh & aged Cells



\*Kabra, Karmakar, Vishnugopi, Mukherjee, *Energy Storage Materials* (accepted), 2024.

# Thermal runaway propagation (TRP) characteristics



\*Karmakar, Mukherjee et al., Journal of The Electrochemical Society, 171, 010529 (2024).

## **Opportunities for Li metal chemistry**



## Why do we need to evaluate solid-state battery safety?



# Solid electrolyte/lithium interface



\*Vishnugopi, Hasan, Zhou and Mukherjee, ACS Energy Lett., 8, 398 (2023).

# Electrochemical signature: interphase



Current density: 0.1 mA/cm<sup>2</sup> ; total capacity: 10 mAh/cm<sup>2</sup>

# Thermal stability: *solid electrolyte-anode interface*





# Non-progressive interphase (at the LPS/Li interface)

# Thermal stability: *interphase* effect



- Progressive interphase growth mixed ionic/electronic conducting
- Fundamental correlation between the solid-solid interphase/interface dynamics and *thermal stability*?

### Li-ion & solid-state battery cell: safety comparison



# Summary & Outlook



# Acknowledgement





#### THE END

for now...

# **THANK YOU!**