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Some of the compounds we handle in R&D and/or manufacturing are potentially explosive and/or shock sensitive.

• We can’t do full suite of explosivity tests on every compound

• Yoshida (1987) generated a correlation to predict explosion propagation (EP) and shock-sensitivity (SS) based on DSC data alone

• According to IQ Survey, 7 of 10 pharma companies surveyed reported using the Yoshida correlations.  

• Incorporated into ASTM E1231 “Standard Practice for Calculation of Hazard Potential Figures-of-Merit for Thermally Unstable Materials” 
and referenced in CSB reports.  Widely accepted/used.

Allian et. Al, Org. Process Res. 
Dev. 2020, 24, 11, 2529–2548

Yoshida, Tadao, et al. "Prediction of fire and 

explosion hazards of reactive chemicals (Part 1). 

Estimation of explosive properties of self-reactive 

chemicals from SC-DSC data." Kogyo 

Kayaku;(Japan) 48.5 (1987).

EP = log(∆H) - 0.38 log(T-25) – 1.67

SS = log(∆H) - 0.72 log(T-25) – 0.98
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As a frequent user of this correlation, I found myself wondering…

• How much data was used in the construction of these correlations?  How robust are they?  

• Has anyone independently confirmed/re-assessed the original correlation?  

• What exactly did Yoshida mean by “shock-sensitive” and “explosion propagating”?  

• Are the DSC parameters really the best predictor variables?

• Can we do better in the age of “big data” machine learning?
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There are various examples in the literature of people publishing DSC data and Yoshida predictions with no confirmatory 
testing, or applying the technique to systems beyond the initial scope of pure substances.

• Overstatement of the results:

https://doi.org/10.1016/j.dyepig.2023.111784

• Yoshida correlation applied to a reactive mixture 
of NaH in DMSO:

https://pubs.acs.org/doi/10.1021/acs.oprd.0c00159

https://doi.org/10.1016/j.dyepig.2023.111784
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00159
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• The paper is in Japanese (other than the abstract) and is not available digitally, but a scanned version was obtained through Article Galaxy

Yoshida, Tadao, et al. "Prediction of fire and explosion hazards of reactive chemicals (Part 1). Estimation of explosive properties of self-reactive chemicals from SC-DSC 

data." Kogyo Kayaku;(Japan) 48.5 (1987).
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Yoshida’s original data set is sparse, and has few non-explosives

EP: SS:

10 non-EP
23 EP

6 non-SS
15 SS

?
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Yoshida’s original data set is sparse (23 data points), many of which are high explosives

Mixture of 2 chemical species

Mixtures of 2 chemical species

DSC showed 2 distinct exotherms; 
        Yoshida developed his own averaging technique just for this one data point

Presumably a typo

SS:
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Various companies have developed “modifications” of original Yoshida correlations

• Same approach using log(T-25) and log(∆H) but shift it to be more conservative; generate fewer false-negatives

• Each one is generated by modifying slope or intercept of the original lines, trying to capture all the positives, largely ignoring negatives.

• Bodman developed a new correlation for EP using a new dataset (n=22)

• Most pharmas also use Tinit rather than Tonset

• At Merck, if a material is flagged as “Yoshida positive” we 
would usually follow up with a drop-weight test (BAM 
Fallhammer) which directly tests for shock-sensitivity

• Explosivity testing is less common and must be 
outsourced.  Several attempts to “validate” EP 
correlation have been attempted (largely inconclusive)

• SS data is easier to generate and find, and is often more 
useful for pharma R&D purposes

• Our current focus is on SS rather than EP
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Tinit

Tonset

∆H (area)

• Tinit is where exotherm first 
deviates from baseline

• Tonset is where steepest 
tangent line intersects 
baseline (used by Yoshida)
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The original paper was “Part 1” of a series.  In Part 4 Yoshida focused on organic peroxides and mixtures: 

 “Prediction of fire and explosion hazards of reactive chemicals (Part 4). Estimation of explosive property 
of organic peroxides from SC-DSC”

Watanabe, Wada, Matsunaga, Itoh, Tamura, and Yoshida. Prediction of fire and explosion hazards of reactive chemicals (Part 4). 
Estimation of explosive property of organic peroxides from SC-DSC. Kogyo Kayaku, Vol 50 No.2 pp100-105.

• The fact that Yoshida created a second correlation rather than using or updating the original EP correlation seems to 
undermine the value of the initial correlation

5 new data points New “Correlation”!
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With Ben Dobson (AZ), I compiled a dataset of compounds for which both DSC and Fallhammer data exists, using both 
published and unpublished data

• Journal articles

• Internal databases (Merck, AZ, BI [no structural info])

• Include only chemically-well-defined substances (no mixtures/formulations)

• Attempt to focus on materials of pharmaceutical relevance (intermediates, APIs, reagents) rather than high explosives

• Eliminate materials which have very complex multi-modal DSC behavior

• Not all data is created equal

• Tinit vs Tonset?  Terminology is not always applied consistently

• For materials where Tinit cannot be directly estimated from the available data, we developed a correlation to estimate Tinit given Tonset

• DSC pans: high-pressure sealed bombs? 

• Fallhammer: “positive” vs. “negative” can be subjective and may vary from company to company or user to user

• Some papers reported only performing a manual “hammer test” with an actual hammer
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• ~380 compounds in the current dataset, ~300 where structural information is available

• ~70 are shock-sensitive

• Some classes of compounds of interest include:

• Yoshida’s original ~20 compounds

• Pharmaceutical intermediates and active pharmaceutical ingredients (APIs)

• Azodicarboxylates

• Peptide coupling reagents

• Diazo compounds

• Fluoro-azidopyridines

• Oxidation reagents
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Original Yoshida data set vs. our expanded data set

• Some false negatives, many false positives

• Merck and Pfizer modifications reduce false negatives, but greatly 
increase false positives

2.0

2.2

2.4

2. 

2. 

3.0

3.2

1. 1. 1. 2.1 2.3 2. 2. 

 o
g
( 
H
)

 og(Tonset 2 )

Yoshida s  riginal Data (SS, using Tonset)

SS

Not SS

Yosh SS

• No clear indication that these two variables are suitable 
predictors!

2.0

2.2

2.4

2. 

2. 

3.0

3.2

1. 1. 1. 2.1 2.3 2. 2. 

 o
g(
 
H
)

 og(Tinit 2 )

All Data

SS

Not SS

Yosh SS

Merck SS

P zer SS



Public

Results

15

Accuracy Comparison (full dataset)

Yoshida Merck Pfizer Enthalpy 
> 800 J/g

True Pos. 57 62 70 69

True Neg. 179 137 49 67

False Pos. 133 175 263 245

False Neg. 13 8 0 1

Accuracy % 62% 52% 31% 36% H Threshold
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Besides DSC data, supplement with additional structural information

• MW, molecular formula (# of each type of atom)

• C, H, N, O, M

• Oxygen Balance and OB100

• # of each HEFG/explosophore

• Nitro, azo, azide, N-O, N-N, N-S, O- , C≡C

• Explosophore density (explosophores/MW)

Some of these are inter-correlated, reduce the number of variables by eliminating highly correlated variables

Some of the explosophores show up very infrequently in the dataset
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Due to the Dichotomous Nature of the Data (SS or not SS), this is a Classification problem

• Software randomly separates 10% of the datapoints to serve as diagnostic

• Uses the other  0% to generate 1000 different “decision trees” which use the variables to predict whether a given 
compound is shock-sensitive or not

• Each of the 1000 trees gets a “vote” when making a prediction for an unknown compound

• Final “model” is a “black-box” set of trees, not a simple equation that can be written down

Source:
https://www.nvidia.com/en-us/glossary/random-forest/
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Model 2c

Yoshida’s variables
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Accuracy Comparison (only compounds with structural information)

Yoshida Merck Pfizer Enthalpy 
> 800 J/g

Log.Reg 2c 
(semi-
conservative) 

Log.Reg 2c 
(conservative) 

True Pos. 57 62 70 69 59 69

True Neg. 97 58 8 20 166 88

False Pos. 127 166 216 204 58 136

False Neg. 13 8 0 1 11 1

Accuracy % 52% 41% 27% 30% 85% 53%

Term
L-R 

ChiSquare

Prob>Chi 

Sq

MW 3.33 0.0681

OB100 31.46 <.0001*

Azo 23.60 <.0001*

Tinit 25.94 <.0001*

log(DH) 3.02 0.082

MW*OB100 4.64 0.0312*

MW*Azo 0.67 0.414

MW*Tinit 0.76 0.3841

MW*log(DH) 3.71 0.0541

OB100*Azo 2.61 0.1062

OB100*Tinit 12.84 0.0003*

OB100*log(DH) 5.41 0.0201*

Azo*Tinit 1.56 0.2115

Azo*log(DH) 5.78 0.0162*

Tinit*log(DH) 2.03 0.1544

Prob Score = f(OB100, Azo, Tinit, etc.)
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• Yoshida correlation should be applied very cautiously if at all, as its fundamental underpinnings have not been fully 
validated

• The process safety community can do better with modern data analytics

• The old variables of log(T-25) and log(∆H) are not by themselves good predictors of SS

• Our work on SS analysis is ongoing (hope to publish later this year)

• Adding in oxygen balance and a few 2-factor interactions can greatly improve the correlation
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