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Background

Some of the compounds we handle in R&D and/or manufacturing are potentially explosive and/or shock sensitive.

We can’t do full suite of explosivity tests on every compound

Yoshida (1987) generated a correlation to predict explosion propagation (EP) and shock-sensitivity (SS) based on DSC data alone

According to 1Q Survey, 7 of 10 pharma companies surveyed reported using the Yoshida correlations.

Incorporated into ASTM E1231 “Standard Practice for Calculation of Hazard Potential Figures-of-Merit for Thermallytinstabbey Matesirds”
and referenced in CSB reports. Widely accepted/used. Dev. 2020, 24,11, 2529-2548
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Background

As a frequent user of this correlation, | found myself wondering...
* How much data was used in the construction of these correlations? How robust are they?

* Has anyone independently confirmed/re-assessed the original correlation?

What exactly did Yoshida mean by “shock-sensitive” and “explosion propagating”?

Are the DSC parameters really the best predictor variables?

Can we do better in the age of “big data” machine learning?

€9 MERCK
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Background

There are various examples in the literature of people publishing DSC data and Yoshida predictions with no confirmatory
testing, or applying the technique to systems beyond the initial scope of pure substances.

* Overstatement of the results: * Yoshida correlation applied to a reactive mixture

of NaH in DMSO:
determination of the exothermic peak temperatures for D1, D2, and D3 as 145.3°C,

because of the ARC cell rupture, DSC evaluation of a mixture containing 17.2% NaH in mineral oil (60

145.2 I:lc-—‘n and 148.2 DC: I'ESDECﬁVEIF, and the mrresponding onset tem DE‘I'E[tI.Il'ES ds wt %) and 82.8% DMSO was performed to better understand the total heat output of this thermal
115.8 DC, 116.7 DC, and HSDC, respectively, could be achieved from the differential decomposition (Figure 7, left). Initially an endothermic event (14 to 39 °C) was observed, which was
immediately followed by 2 minor exothermic event (32 to 120 °C) with z total energy release of -93
scanning calorimetry (DSC) curves. The similar values of the exothermic peaks between J/g. Starting at 120 °C, two consecutive major exothermic events with a combined heat of ~1224 J/g
. . . were detected. The sharp narrow peaks in the DSC profile are characteristic of autocatalytic reactions,
D1 and D2 may be attributed to their comparable molecular weights, energy gaps, and which represent much more significant hazards of thermal decomposition.
enthalpy values. Additionally, they may share similar thermal decomposition reaction events were deemed to be explosive according to the Yoshida correlation. JE)NERRSEpENRERyEE

in

mechanisms, such as the decomposition of diazirine moieties. |[§ilynilG o8l
application of the Yoshida correlation and the DSC confirmed that none of the three
dyes were likely to be explosive (as illustrated in Table 1), at which point their synthesis

1 - 10.3% KaH + 8.0% blirmeal ol « B1EW DMSOD
| - Heat D50 i ch

processes could be safely scaled up for large-scale applicatio
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https://doi.org/10.1016/].dvepig.2023.111784 https://pubs.acs.org/doi/10.1021/acs.oprd.0c00159
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Original Correlations

* The paper is in Japanese (other than the abstract) and is not available digitally, but a scanned version was obtained through Article Galaxy

Prediction of Fire and Explosion Hazards of Reactive Chemicals (1 ).
Estimation of Explosive Properties of Self-Reactive Chemicals from SC-DSC Data

by Tadao YOSHIDA®, Fujiroku YOSHIZAWA®*, Mamoru ITOH*
Takehiro MATSUNAGA*, Masatoshi WATANABE**
and Masamitsu TAMURA®*

The correlations of observed explosion propagation and shock sensitivity with DSC
date of self-reactive materials were examined. Plot of DSC decomposition heat (Qpsc)
against DSC extrapolated onset temperature (7psc) gave two distinctive scattering
area of points for explosion propagation and no propagation. From the plot, the follow-
ing judgement function EP was derived:
EP=log Qpsc—0.38 log(Tpsc—25) —1.67
If EP is less than 0, no explosion propagation is expected and vice versa.
Similarly, the SS function for shock sensitivity was derived as follows:
SS=log Qpsc—0.72 log(Tpsc—25) —0.98
If SS is Less than 0, the sensitivity is expected less than m-dinitrobenzene and
vice versa.
Yoshida, Tadao, et al. "Prediction of fire and explosion hazards of reactive chemicals (Part 1). Estimation of explosive properties of self-reactive chemicals from SC-DSC
data." Kogyo Kayaku;(Japan) 48.5 (1987). MERCK
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Original Correlations

Yoshida’s original data set is sparse, and has few non-explosives
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Fig. 1 Plot of log Qusc vs. log (Tpsc—25)
(0 detonation propagation
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Fig. 2 Plot of log Qpsc vs. log (Tpsc—25)
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Original Correlations

Yoshida’s original data set is sparse (23 data points), many of which are high explosives
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Sodium dimethylsulfinste ———  » DSC showed 2 distinct exotherms;
Yoshida developed his own averaging technique just for this one data point 9 MERCK
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Other Modifications

Various companies have developed “modifications” of original Yoshida correlations

* Same approach using log(T-25) and log(AH) but shift it to be more conservative; generate fewer false-negatives

e Each one is generated by modifying slope or intercept of the original lines, trying to capture all the positives, largely ignoring negatives.
* Bodman developed a new correlation for EP using a new dataset (n=22)

* Most pharmasalsouse T

ini

. rather than T

nset

Modifications
* At Merck, if a material is flagged as “Yoshida positive” we

would usually follow up with a drop-weight test (BAM > Yosh EP
Fallhammer) which directly tests for shock-sensitivity 32 Yosh S
Bodman EP
* Explosivity testing is less common and must be 30 ——BMSEP
outsourced. Several attempts to “validate” EP Y Merck EP wsh\dass N\e““sf
correlation have been attempted (largely inconclusive) ® Mertk S8 4os§§‘£aﬂ“’
- 2.6 —— Pfizer EP \\j\eTCkEP
e SSdatais easier to generate and find, and is often more —— Pfizer S
2.4
useful for pharma R&D purposes
22 BMS EP
e Our current focus is on SS rather than EP
2.0
1.5 1.7 1.9 2.1 2.3 25 2.7

Log(T-25)
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DSC — initiation vs. onset temp

o
=
o
o
ik}
]
™
E
(=]
Z
=
=
|1
m
[1}]
T

-1

Exo Up

Peak temperature: 28022 °C . . .
Tiit is Where exotherm first
deviates from baseline
T * T,.cet IS Where steepest
init tangent line intersects
236.73°C baseline (used by Yoshida)
AH (area)
e Tonset
Enthalpy (normalized): 8§35.54 J/g -
Onsetx: 27627 °C
| | T T T | T T T | T T T | T T T |
25 75 125 175 225 275 325
Temperature T (°C)

€9 MERCK



Public

A second Yoshida EP Correlation?

The original paper was “Part 1” of a series. In Part 4 Yoshida focused on organic peroxides and mixtures:

“Prediction of fire and explosion hazards of reactive chemicals (Part 4). Estimation of explosive property
of organic peroxides from SC-DSC”

3.2
using Tonser)
The Correlation of observed explosion propagation data with DSC data of self-reactive 5,8
materials were examined. Plot of logarithum of DSC decomposition heat (Qpgc) against
that of DSC extraporated onset temperature (Tpsc) gave two distinctive scattering area of o -y 4 “ 3
points regarding the ability to propagate an explosion. From the plot, the following judge- é Y ' -
ment function EP was deri\(ed: ) 4 , 9 | e P
EP=log Qpsc—0. 57 log (Tpsc—25) —1. 34 ’ X not EP
2.4 -
Yoshida Orig. EP
" Yoshida EP2
.2 + + + s
5 new data points =) New “Correlation”! o S ¥-8 i Bl
log (Tosc—25) > 2.7

Fig. 3 Plot of log Qpsc vs. log (Tphsc—25) on critical
mixtures of explosion propagation.

* The fact that Yoshida created a second correlation rather than using or updating the original EP correlation seems to
undermine the value of the initial correlation

Watanabe, Wada, Matsunaga, Itoh, Tamura, and Yoshida. Prediction of fire and explosion hazards of reactive chemicals (Part 4).
Estimation of explosive property of organic peroxides from SC-DSC. Kogyo Kayaku, Vol 50 No.2 pp100-105.
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Can we do better today?

With Ben Dobson (AZ), | compiled a dataset of compounds for which both DSC and Fallhammer data exists, using both
published and unpublished data

e Journal articles

Internal databases (Merck, AZ, Bl [no structural info])

* Include only chemically-well-defined substances (no mixtures/formulations)

« Attempt to focus on materials of pharmaceutical relevance (intermediates, APIs, reagents) rather than high explosives
* Eliminate materials which have very complex multi-modal DSC behavior

* Not all data is created equal

* Tt VS Tonet? Terminology is not always applied consistently

* For materials where T,;; cannot be directly estimated from the available data, we developed a correlation to estimate T;,; given T, .

* DSC pans: high-pressure sealed bombs?

* Fallhammer: “positive” vs. “negative” can be subjective and may vary from company to company or user to user

* Some papers reported only performing a manual “hammer test” with an actual hammer

€9 MERCK
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Data Set

* ~380 compounds in the current dataset, ~¥300 where structural information is available

~70 are shock-sensitive

Some classes of compounds of interest include:

Yoshida’s original ~20 compounds

Pharmaceutical intermediates and active pharmaceutical ingredients (APIs)
Azodicarboxylates

Peptide coupling reagents

Diazo compounds

Fluoro-azidopyridines

Oxidation reagents

€9 MERCK
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Results

Original Yoshida data set vs. our expanded data set

| B . All Data
Yoshida's Original Data (SS, using T,cet)

3.2

® s T ¢
\f,n X NotSS
X NotSS S Yosh S$
——YoshSS i@ X xR K e N N Merck S$
----- Pfizer SS
1.5 1.7 1.9 2.1 2.3 2.5 2.7
Log(Tonset'zs)
Log(T;ni¢25)
* Some false negatives, many false positives
. . : * No clear indication that these two variables are suitable
* Merck and Pfizer modifications reduce false negatives, but greatly .
: . predictors!
increase false positives
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Results

Accuracy Comparison (full dataset)

Yoshida Enthalpy
>800J/g

True Pos.

True Neg.
False Pos.
False Neg.

Accuracy %

179
133
13

62%

137
175
8

52%

49
263

31%

67
245

36%

Log(AH)
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Additional variables analyzed

Besides DSC data, supplement with additional structural information
e MW, molecular formula (# of each type of atom)
* CH,N,O,M
e Oxygen Balance and OB100
e # of each HEFG/explosophore
* Nitro, azo, azide, N-O, N-N, N-S, O-0O, C=C
* Explosophore density (explosophores/MW)
Some of these are inter-correlated, reduce the number of variables by eliminating highly correlated variables

Some of the explosophores show up very infrequently in the dataset

€9 MERCK
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Random Forest approach - methodology

Due to the Dichotomous Nature of the Data (SS or not SS), this is a Classification problem
e Software randomly separates 10% of the datapoints to serve as diagnostic

e Uses the other 90% to generate 1000 different “decision trees” which use the variables to predict whether a given
compound is shock-sensitive or not

e Each of the 1000 trees gets a “vote” when making a prediction for an unknown compound

I o III

* Final “model” is a “black-box” set of trees, not a simple equation that can be written down

Instance

RandomV /
4

Class-A Class-B Class-B

l Majority-Voting J I Source:

Final-Class | https://www.nvidia.com/en-us/glossary/random-forest/ 6 MERCK



Public

Machine Learning approach —initial results

Yoshida’s variables

Model 2c

Variable Importance of Predictors
double bootstrap using all data
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Logistic Regression Using “Top 5” Variables

Accuracy Comparison (only compounds with structural information)

True Pos.

True Neg.
False Pos.
False Neg.

Accuracy %

Yoshida

57
97
127
13

52%

62

58

166

41%

Pfizer Enthalpy

Log.Reg 2c
> 800J/g (semi-
conservative)

Log.Reg 2c

(conservative)

70 69 59 69

8 20 166 88
216 204 58 136
0 1 11 1
27% 30% 85% 53%

Prob Score = f(OB100, Azo, T, etc.)

Term

MW
OB100
Az0
Tinit
log(DH)

MW=*0OB100

MW*Azo
MW=*Tinit

MW=*log(DH)
OB100*Azo
OB100*Tinit
OB100*log(DH)
Azo*Tinit
Azo*log(DH)

Tinit*log(DH)

L-R Prob>Chi
ChiSquare Sq
3.33 0.0681

31.46) <.0001*
23.60 <.0001*
25.94  <.0001*

3.02 0.082
4.64 0.0312*
0.67 0.414
0.76 0.3841
3.71 0.0541
2.61 0.1062

12.84  0.0003*

541  0.0201*
1.56 0.2115
5.78  0.0162*
2.03 0.1544

€9 MERCK
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Conclusions

* Yoshida correlation should be applied very cautiously if at all, as its fundamental underpinnings have not been fully
validated

* The process safety community can do better with modern data analytics

* The old variables of log(T-25) and log(AH) are not by themselves good predictors of SS
e Our work on SS analysis is ongoing (hope to publish later this year)

* Adding in oxygen balance and a few 2-factor interactions can greatly improve the correlation

€9 MERCK
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