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Challenges of Contemporary Group Theories

Benson Group Theory:

» The idea is to decompose 2 .
! (o)
moIecuI“ar proeertles. (AHf, S°, C,) as the From Anslyn and
sum of “group” contributions. Dougherty’s 4
o Textbook S

- Group contributions are calculated based

on trusted experimental or computational

data, and transferability is assumed. 1) C-CH)uevrrnnnnnns 2(40.20)
2)C-ChsH).eevvnnnnnnnnn. -1.90

Problems we want to address: 2 c -(c(:B))(C)(H)Q ........... 4.86

(o1 (o 5.51
- Specificity: the definition of a “group” has never been 5Ce-(H.ovvvevrnnnnn.. 5(3.30)
formalized and inconsistent granularity is applied. 515 keallmole

) ) ) (-21.6 kd/mole)
* Provenance: inconsistent thermodynamic data

is available/used to determine group contributions. Experimental AH;: -5.15 +/- 0.34 kcal/mol

- Extensibility: because of the provenance and specificity problems,
it isn’t possible to develop new groups in a consistent way.
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Challenges of Contemporary Group Theories

Benson Group Theory: AH; from modern quantum chemistry

- The idea is to decompose 200 1 e G4
molecular properties (AH;, S°, C,) as the S 572 small
sum of “group” contributions. & molecules

JoEP £ 200 -
- Group contributions are calculated based X
on trusted experimental or computational 2
data, and transferability is assumed. & —600 -

E MSE: -0.06 kJ/mol

Problems we want to address: 1000 MAE: 419 kJimol
- Specificity: the definition of a “group” has never been -1000 -600 -200 200
formalized and inconsistent granularity is applied. AH; ., (kd/mol)
° Provenance: InCOHSIStent thermOdynam|C data Zhao, Q.; Savoie, B. M.; Enthalpy of Formation Prediction via a fully Self-Consistent

Component Increment Theory. J. Chem. Info. Model. 2020, 60, 2199-2207

is available/used to determine group contributions.

- Extensibility: because of the provenance and specificity problems,
it isn’t possible to develop new groups in a consistent way.
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Challenges of Contemporary Group Theories

Can we circumvent the provenance and
extensibility challenges using the throughput
and accuracy of modern quantum chemistry?

Savoie Research Group | Zhao, Q.; Savoie, B. M. Nature Computational Science 2021, 479-490. (ONR — Energetic Materials Support, PO: Dr. Chad Stoltz) | 6



Graphical Decomposition of Model Compounds

How will we select

identify components™ \/\"/\OH molecules for

0 parameterizing TCIT
1-hydroxy-pent-2-ene-2-one 2
Recursively ydroxy-p components?
generate
smallest \/ \/\‘W /\n/\OH‘\n/\OH /\OH
acyclic model
compounds \ / 0] 0 0

new groups

Resolve

dependencies /\‘ /\?/ ‘\"/
o) o)

Resolve rank

deficiency with

elementary &S —OH

constraints

Savoie Research Group | Zhao, Q.; Savoie, B. M. J. Chem. Info. Model. 2020, 60, 2199-2207.



Graphical Decomposition of Model Compounds

Prediction target: \/\"/\OH AH;gq =-259.9 kJ/mol
o AHf,TCIT = -259.3 kd/mol
1-hydroxy-pent-2-ene-2-one no experimental data
Gen 4: /\n/\OH \
o)
T°p°;?)9r’,:°a"y Gen 3- \/\?/ .\[I/\OH Model compounds
graph perform the highest
Gen2: AN uality quantum
(Automatically e Y @ T chemistr
o) y
handled by .
TCIT software) calculations (G4

Gen1: 'S~ /\‘ ‘\"/ —OH throughout)

Savoie Research Group | Zhao, Q.; Savoie, B. M. J. Chem. Info. Model. 2020, 60, 2199-2207.



Graphical Decomposition of Model Compounds

Have we solved the specificity problem?

All components are unique out to a graph depth of two,
no exceptions.

Have we solved the provenance problem?

All AH; data is calculated at the G4 composite level,
no exceptions.

Have we solved the extensibility problem?

Model compounds exist for all conceivable components,
no exceptions.




Benchmarking AH; . Predictions Against the PNK Dataset

572 small compounds from PNK

- Initial benchmarking set consists of ~1100 linear 200 -
C,H, and O containing compounds from PNK! - ® G4
(1) J. B. Pedley, R. D. Naylor, S. P. Kirby “Thermochemical Data of 3
Organic Compounds” 2" ed. 1986 E
S5 —200 -

* PNKis a core dataset for fitting Benson groups 3

O

E — -
» ~600 PNK compounds are small enough for G4 & —-600
calculations and comparison with experiment. E Mig '228 tj; mo:

: 4. mo

~1000 . .
-1000 -600 -200 200
AH; ., (kJ/mol)

Zhao, Q.; Savoie, B. M.; Enthalpy of Formation Prediction
via a Fully Self-Consistent Component Increment Theory. J.
Chem. Info. Model. 2020, 60, 2199-2207
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Benchmarking AH; . Predictions Against the PNK Dataset

150 medium compounds from PNK

- Initial benchmarking set consists of ~1100 linear
C,H, and O containing compounds from PNK’ . 200 1 eTCIT
(1) J. B. Pedley, R. D. Naylor, S. P. Kirby “Thermochemical Data of 3
Organic Compounds” 2" ed. 1986 E
S5 200 -
* PNKis a core dataset for fitting Benson groups =
E
O
- ~600 PNK compounds are small enough for G4 £ —600 -
calculations and comparison with experiment. E II\\nlliE g;g ';j; mo:
2. mo
« ~150 PNK compounds are large enough for direct ~1 00_01 000 —6.00 _2'00 2(')0
G4 calculation and comparison with TCIT.

AH; ., (kJ/mol)

Zhao, Q.; Savoie, B. M.; Enthalpy of Formation Prediction
via a Fully Self-Consistent Component Increment Theory. J.
Chem. Info. Model. 2020, 60, 2199-2207
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Benchmarking AH; . Predictions Against the PNK Dataset

~500 large compounds from PNK

- Initial benchmarking set consists of ~1100 linear
C,H, and O containing compounds from PNK - 200 1 eTCIT
(1) J. B. Pedley, R. D. Naylor, S. P. Kirby “Thermochemical Data of 3
Organic Compounds” 2" ed. 1986 E
S5 -200 -
* PNKis a core dataset for fitting Benson groups x
o
S -60 -
+ ~600 PNK compounds are small enough for G4 o
calculations and comparison with experiment. E II\\AA:E '2‘118 tj;mo:
4. mo
- ~150 PNK compounds are large enough for direct ~1 00_01 000 —6.00 _2'00 2(')0
G4 calculation and comparison with TCIT.
« ~500 PNK compounds are large enough to evaluate Zhao, Q.; Savoie, B. M.; Enthalpy of Formation Prediction
the predictive accuracy of the increment theories. via a Fully Self-Consistent Component Increment Theory. J.

Chem. Info. Model. 2020, 60, 2199-2207
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Benchmarking AH; . Predictions Against the PNK Dataset

~500 large compounds from PNK

- Initial benchmarking set consists of ~1100 linear
C,H, and O containing compounds from PNK? — 200 71 eTCIT
(1) J. B. Pedley, R. D. Naylor, S. P. Kirby “Thermochemical Data of 3 @ BGIT
Organic Compounds” 2" ed. 1986 E
S5 -200 -

* PNKis a core dataset for fitting Benson groups X

O

T® _ .
« ~600 PNK compounds are small enough for G4 = 600 MiETC'T '_'2"613 ::j;mg:
calculations and comparison with experiment. E MSE:;,TT "1.71 kJ/mol

~1000 MAEgg : 5.84 kJ/mol
+ ~150 PNK compounds are large enough for direct ' ' :
G4 calculation and comparison with TCIT. -1000 -600 -200 200
AH; ., (kJ/mol)

« ~500 PNK compounds are large enough to evaluate Zhao, Q.; Savoie, B. M.; Enthalpy of Formation Prediction
the predictive accuracy of the increment theories. via a Fully Self-Consistent Component Increment Theory. J.

Chem. Info. Model. 2020, 60, 2199-2207

TCIT shows comparable performance to BGIT/CHETAH but is
derived exclusively from extensible G4 data.

Savoie Research Group | Zhao, Q.; Savoie, B. M. J. Chem. Info. Model. 2020, 60, 2199-2207.



Extension to Ring-Containing Molecules

- Ring-containing molecules have additional strain and/or conjugation corrections that
exacerbate the extensibility issues of Benson Theory.

- In TCIT we are addressing this through chemically specific ring corrections that account
for differences in substitution pattern and topology:

1. Decompose ring into acyclic model Technical Developments

compounds: RC Model Compounds
RCO RC1 RC,
P W NN, (O:Depth 0 O Depth 1 Q: Depth 2
s @ Method 1: Use RC, based model parameterized
N W/ \)\ - to G4 data.
Method 2: Use graph-NN to predict RCy-RC,

2. Add ring correction (RC) to final prediction:
RC = Hp(ring) — He(T)- He (1 )- He (0 )- He () He (€)-He (7))

Savoie Research Group | Zhao, Q.; lovaanc, N.; Savoie, B. M. J. Chem. Info. Model. 2021, 61, 5013-5027



Extending TCIT to Radicals and lons

A recurring question is when will
TCIT support predictions on
radicals and ions?

covers neutral
close-shell species, so these
extensions require us only to
predict the difference between the
target and the nearest closed-
shell neutral.

TCIT already

This amounts to developing
models to predict IP/EA/+H*/-H*

Savoie Research Group |
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OH bond
energy
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Extending TCIT to Organometallics

High level calculations on transition metals

\ C| / are going to get expensive, so we want to

avoid calculating components directly

\ AHf—ZCTCIT1+ Z BDE;

1EM—-X

Idea: Only use TCIT for the ligands and
approximate the remainder with bond energies

Species | AHf Contribution (kcalimol) __| Source ___

e
O—-F

PtCl, (g) 26.41 Schafer 1975 Sanity checks work

Pt-P 1 (B3LYP) -39.91 Craciun 2010 surprising'y well

Pt-P 2 (B3LYP) -34.81 Craciun 2010

PEL, (TCIT) ErEEE (Note: PtCl, availability probably
Predicted -118.73 makes it better than it ought to be)
trans-Pt(PEt;),Cl, -118.3+1.9 Takhin 1984
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Extending TCIT to Organometallics

ST TN High level calculations on transition metals
I % are going to get expensive, so we want to
\ “\\\\ avoid calculating components directly
ot
D
" / CI AHf — E CTCIT i T E BDE
S ZEM X

Idea: Only use TCIT for the ligands and
approximate the remainder with bond energies

(Spocies | sblicalmo) | Source

Cp (TCIT/G4) 19.9 (x2 for compound) TCIT/G4

Ti-Cl (TiCl,/4) -43.6 Calhorda 1986 Sanity checks work

Ti-Cp (Ti(Cp),Cl,) -7.9 (x2 for compound) Calhorda 1986 su rprising|y well

CH3 (TCIT/G4) 32.41 TCIT/G4

Ti-CH, (Ti(Cp),(CH;),)  -38.6 Calhorda 1986 (Note: PtCl, availability probably
Predicted 258 makes it better than it ought to be)
Ti(Cp),(Cl)(CH,) -29.8 +/- 3.0 Calhorda 1986
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Extending TCIT to Organometallics

TCIT now contains all CAVs necessary to predict AH;
of all N, H, O, and C-containing molecules in
pubchem. This is the largest repository of G4
calculations on large molecules in the world.

It is foreseeable that we could complete all B, F, Cl, S,
and P containing structures over the next few years.




The Reaction Prediction Problem

A - B : When we know the reactants and products,
mature guantum chemistry tools exist to characterize
transition states and establish pathways

A - ? : For degradation reactions,
plausible reactions are often

unknown.
Thermal, pH, hv, O,

@) other stressors 9

_OH
H OO

3-hydroperoxypropanal

Savoie Research Group |




Yet Another Reaction Program (YARP)

Idea: Turn the A=>? problem into tractable @ Reactant
(and parallelizable) A=>B problems. O Product

O Terminated

Product
Enumeration

Observations: Exploration Soreening
. . . AH,
 Product enumeration is easier than L ﬁt
transition state enumeration. g
A - AH, Threshold
- Transition state algorithms for A->B Aq

problems are mature. Let the TS
algorithm identify physical reactions.

Pathway Low-Level
Analysis TS Search
[ ]
i
§ Success

High-Level
TS Refinement

- Recent developments in semi-empirical
models and ML create opportunities.

IRC
trajectory

- Solving the A->? problem is the
prerequisite for reaction network prediction.

Savoie Research Group | Zhao, Q.; Savoie, B. M. Nature Comput. Sci. 2021 ; Zhao, Q.; Savoie, B. M. Angew. Chemie 2022.



YARP: Elementary Reaction Step(s)

Polar and pericyclic organic reactions are decomposed into elementary electron donor
and acceptor reactions with concomitant o-bond breaks

O Form 1 Products Break 1 Form 1OProducts
0
IS J o
e )\ 0" O + HF O O +H
bnfn O O + F O © O © F
will refer to u \—J - O )OL
- F
cﬁatfgéi Lone-Pair Donors G0 F 0709 0070

r-bonds are X O

allowed O O O o L 0 ) -
to arbitrarily /“\ -/ O°~""0"F F "0
. L S t Lewis Structure
rearrange O O n F@ ewll:?ltetr:ﬂ; ure )CJ)\ Filtering
@) + HF
\ / 0O O o F ©)
_ @
Lone-Pair Acceptors + 28 others

Savoie Research Group | Hsu, H. H., Zhao, Q., Savoie, B. M. In Preparation



B-D-Glucose Pyrolysis Network Exploration

To perform a deep network
exploration, we've
implemented a modified
- version of Dijkstra’s

- o algorithm

/OH

o HO
OH

At each iteration:

(1) all b2f2 reactions are
explored for active nodes.

(2) Active nodes are
determined by the minimum
barrier to a given product (with
a window)

Zhao, Q.; Savoie, B. M. Proc. Nat. Acad. Sci. 120, 2023

Depth 1:

Depth 2:

Depth 3:

(8) Water catalyzed reactions
are considered for all H-
transfers

Depth 4:
Depth 5:
Depth 6:
Depth 7:
Depth 8:

I11LNNR




B-D-Glucose Pyrolysis Network Exploration

Zhao, Q.; Savoie, B. M. Proc. Nat. Acad. Sci. 120, 2023

HO OH LiOH
i OH 4—
N0 NN 39.3

Q
O.
I
2 #\ (
- 23 Q
o HE Y3 \~>°
PN N, B
2 -
! N2, N2-3 (56.5) :
\ "!V 0=C=0
©

HO\/\OJ\OH

(201) E ><OH : 730_04 e <\)\ oA

N2-1 LEC R2-2

0
-/\oJ\o i 3BTy A J\

R2-1 Rz

N
>
N
Oe J
-1
(o]
"G NG
~Q ‘6C‘|‘, O O
AN L }\’\ R3-1
(o) [¢]
o Li
o -
o O

Depth 8:

L;EC
Ho cﬁ\/OH HOS Aon Ho/\H)\OH
A~ )

4
O OH

To perform a deep network
exploration, we've
Implemented a modified
version of Dijkstra’s
algorithm

At each iteration:

(1) all b2f2 reactions are
explored for active nodes.

(2) Active nodes are
determined by the minimum
barrier to a given product (with
a window)

(3) Water catalyzed reactions
are considered for all H-
transfers



B-D-Glucose Pyrolysis Network Exploration

129N 2N2°2
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Doped System Ts1 Ts1 152
(doped) (neutral)
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- —
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’
’
7z
15.7 -/
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INTY'
INT1”

Mechanism proposed by experimental team

1S3 TS4 TS5 T56 157 Neutral System
| m== Doped (dimer, anion)
63.5 ! 3 : .
r— | mem= Doped (dimer, radical anion )

w== Neutral (dimer)

| mes Neutral (trimer)

Unstable (bonds break after DFT geometry optimization)

LEDC




B-D-Glucose Pyrolysis Network Exploration

Doped System Ts1 Ts1 T2 T3 Ts4 TS5 TS6 TS7 Neutral System

INT6

ptry optimization)

©Depth1
® Depth2
® Depth3
® Depth4
® Depth5
® Depth6
® Depth7
® Depth8
® Depth9
® Depth10




B-D-Glucose Pyrolysis Network Exploration

w7 Oy +N=CH

+Cat, 17.16 kcal/mol
+Cat, l 46.64 kcal/mol

A1: H,0
A2: HCN
Cat: H,0 as a catalyst
Depth 1: N
Depth 2:
Depth 3: [
Depth 4: D

)epth
Depth?2
Depth3
)epthd
)epthS
Depth6
Depth7
Depth8
Depth9
|® Depth10




B-D-Glucose Pyrolysis Network Exploration

N oligomers
a/\ ‘ /\/\ \ A

& 3 cycle(3) ~»©_—>i ®\\) Longer
B lr‘m N N y ‘ ‘v L}jlﬁ‘ | \ \ V @ ‘ @ @* ~~~~~ /
N, i | 1\>Ga oyele (1), 1=butene

A = p  1 v ) ‘1‘ ] 0 ’%
= / : ) e % [+ 3 ,I'
e, 4 e Cop =\ || Coking
I AR ' 2 . —} ®/Cia/\ \) cycle (1), 2-butene
\ . _ +Cat, 2338 = : /Ga/\
A1: H,0 i \/\Gax\ i @

Depth 1:

@
\ ©)
e @4 \ cycle (1), isobutene A
Cat: H,0 as a catalyst y y ‘; ?/‘ q \ }\i\\yH\( ) c /Y

Depth 2: y

Depth 3: l \/\ cyc.e (2)
, Depth 4: ! C/ \d \ __/
CH3

- _CH
; Ga binds to silica b O
=




B-D-Glucose Pyrolysis Network Exploration

0
Sarin ||
-0
F
Mustard Gas (HB)

N S O

VX O Y I /\?

P N 585 X
/\O/l\s/\/ HS/\ 45/ S — Cl Asv
R HE S - i




(Pop Quiz) The Product Identification Problem

Suppose we'’ve isolated
an unknown degradant

and | start offering you
spectra.

How long until you can
unequivocally identify the
structure?

What if | told you the
starting material?

Savoie Research Group |

0.012-
0.010- 0.41
1.0-
0.008 -
0.31
_ 0.81
0.006 -
0.0041 0.21  0.61
0.002 -
J\%_) 04'
0.000 -
500 10 0.2
0.01
10 :
0.0

Starting Material

\O/o o) © O
A
Q.

Isolated Product

OHO O O O
A
Q.

200

400

600 800 1000

m/z

McGill, C et al. JCIM 2021, 2594-2609 (Simulated IR) ; Wei, J. N. et al. ACS Cent. Sci. 2019, 700-708 (Simulated EI-MS)



Leveraging Mixture of Experts Transformer Architectures

~30m weights

We developed this architecture

to emulate the deductive S W
process that experts use
during product identification (Deduction)
Layer
-
The product identification architecture, T s||888
corresponding to the full network, accepts W £N835s
information about the reactants and (— = puwssran B W o O | G
spectral information of products to () (@) (_Encoder W Spectral -
. . . : = c c Transformer
predict the corresponding product identity. = B [l]S= -g:]
o c o c o
2| 2[]|2°]]8° J Recursive
. LU Feedback
The spectrum to structure (StS) & ) (2) (e = 5o
identification architecture corresponds to é 284913 ggHgg S
just the bottom half. This architecture (]| |||? gealle| (B ]]| g8
doesn’t use any knowledge of reactants. ) )\ DBecoder Jiz J|

Savoie Research Group | Jin, T., Zhao, Q., Savoie, B.M., Chemrxiv, doi:10.26434/chemrxiv-2023-l6lzp



Is there sufficient information for the StS task?

search. Performance is shown on a random

spectra were simulated for 10% testing split.

305,493 USPTO species and

524 860 from PubChem. " Be ® Top-10 @ Ensemble
o ® = Top-1 ® IR+NMR+MS
.. : : : g i ’ ° ® o :\TMR
Sufficient information is > ’ - o MS
@ 60f @ TR T g T T
probable for small molecules: = a e o -
s |8 % % ey 0
~85% tOp-1 &J 40! e e '.
c o ~ ®e
) . 6— ———————————— 1  DECEUDSNUNNES  E——— LW — .—--. —————
Potential deductive bottleneck 2 20| ® ®
for |ar e molecules ----- Overall Top=1 ¢ 8= i
g - 0 o @

[0,10] (10,15] (15,20] (20,25] (25,30]
Heavy Atoms in Target

~38% top-1

Savoie Research Group | Jin, Schofield, Savoie, In Preparation



Direct Evidence of Dynamic Deduction by these Models

Visualizing Per Token Spectral Decisiveness

C
X1 — feedback W)‘\
LO 0 Cl
X Hy
2 _> —> —p DOesy OJA//)’\O/C\/\ 0/\0“3
change? o

HsC
X O/\CH3 \CHJ/ \\o ”
3 q Q . 2 3
C
\Br CI\ /gz\
o} Q o)
1H-NMR 7 . "
Color Legend: IR ’ E o7 ™
o A

EI-MS

Savoie Research Group | Jin, Schofield, Savoie, In Preparation



Does the StS Model Transfer to Real Spectra?

We used 5544 molecules
from NIST with
experimental IR/H-NMR/EI-
MS* as an external test for
the model

None of the NIST molecules
were in the training data,
and all training was on
simulated not experimental
spectra.

Savoie Research Group |

External NIST Testing Set

100
©® IR+tNMR+MS
Top-10 ® IR+MS
:\3 g0l ® R
~ e ® MS
2 e S . OverallTop-1 Accuracy
& 60 >
o
) e
T 40T e
2
o
@
e ————————:
[0,15] (15,30]

Heavy Atoms in Target

*EI-MS was still simulated in these cases.




Leveraging Mixture of Experts Transformer Architectures

We developed this architecture
to emulate the deductive

process that experts use
during product identification

The product identification architecture,
corresponding to the full network, accepts
information about the reactants and
spectral information of products to
predict the corresponding product identity.

The spectrum to structure (StS)
identification architecture corresponds to
just the bottom half. This architecture
doesn’t use any knowledge of reactants.

Savoie Research Group |

~  ~30m weights

Recursive
Feedback

( Linear )

4 . N
Deduction

Layer

Product

C,\
ow
= L
L
e

°%
n ~—

o Encoder T Rea?tant
I g FE .5_] ransrtormer
2 N&m|1d:8
P E H H +
- L0 4 q <€
T -
=
C— o2
© 507| | £ 148 20
© SHEWS 414 E9 O &
O ©.0d o dd o0 |_I 9
o cosS| |38 14 £ L@
a e(/) 4 9 < X =
S
L Decoder Z
J
~
(" w )
(fﬁ — Crantral
o Encoder Spectral
=|l(zc = ] Transformer
-+ o] .9_ .9_
2 o COMCcO
Q LED 8O (| €O
C -+ +
= i < <
{© Y ) =)
+ C —~ o c = O -
O HOwW - e} ) x O
) SEWS €2 ||t o £
o SL2IHTZ SO M €O B
N CT=| < b= b5 2 ®
— U ora||E 30
—] | ~ L) Decoder z )

Jin, T., Zhao, Q., Savoie, B.M., Chemrxiv, doi:10.26434/chemrxiv-2023-16lzp

Recursive
Feedback




Adding Reactant Info Qualitatively Improves Performance

Testing these Reactant + "mfz'f 08 ef 08 0o
Spectra models on product ~ sl 8 &' % %
identification: |re %%
1. 466,330 Reactions from D. § ol ::::::::::::::::::::::::::::::::::::::::?%???I:I::T:?:pf?::F:z:t:F:)fsf
Lowe < 40 StS (IR + NMR + MS)
2. 2:1 Split between real T [
products and starting P 50| @ Overall Testing Set
materia e
3. 80:10:10 Train:Val: Test 0 — '

R+IR |

4. Simulated IR/AH-NMR/EI-
MS for all 305,493 species

R+MS

R+NMR
R+IR+NMR |
R+IR+NMR+MS |

Savoie Research Group | Jin, T., Zhao, Q., Savoie, B.M., Chemrxiv, doi:10.26434/chemrxiv-2023-16lzp



Can the Mixture of Expert Models Handle Information?

100} Top-5 No l}xetlj-lnput
3 O O nalog
A second aspect of 2 N 2 B @
deductive behavior is to SOy o o A
reason with partial, or even, > ® £9
. . © 60 © aeb
contradictory inputs. 5 | Top- ®
O
3
To test the performance = 20 g& .
: @ Variable Inputs
under contradictory @ Fixod Inpue

information we supplied a 0

. @ & & & E? 23
contradictory spectrum to i & =z 2 328 g8
one transformer (at random) = £ g2 B
o« £
O
(&)

Savoie Research Group | Jin, T., Zhao, Q., Savoie, B.M., Chemrxiv, doi:10.26434/chemrxiv-2023-16lzp



Can the Mixture of Expert Models Perform Out-of-Distribution?

80
Reagent identification is an 70| @ Moasent Tosting 3¢ = N
untrained task that has the < 60/op5 | : .
same inputs as product/null > ol fi . .
characterization S -
g e
e 30 Top-1
We curated ~1k reagents S 20|
involved in ~3K reactions 10/
from the USPTO dataset. ol | |
None of these species were 2 < = =
seen as prediction targets E B : E
+
o

during training.

R+IR+NMR+MS

Savoie Research Group | Jin, T., Zhao, Q., Savoie, B.M., Chemrxiv, doi:10.26434/chemrxiv-2023-16lzp



Can the Mixture of Expert Models Perform Out-of-Distribution?

0 O O
. N @\
Predicted b g O\ /Qo\ a's N j\ J_ o NH, @\N/
7
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Minor product identification was tested using 18 reactants with 50
distinct products from Grossman’s textbook and Hartenfeller et al.
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Actionable Design Information: Thermal Stability Scores

(i. Enumerating reactions for edge nodes using ERS\
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Half-Life Simulations are Non-Trivial
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The half-lives of ~32k alkanes with varying topology were simulated under
pyrolysis conditions as a surrogate for thermal stability
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Kinetics Matter for Stability
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Heats of formation are completely non-predictive for relative stability (even for the

simplest organic materials class).
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Kinetics Matter for Stability

The stability score is
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Actionable Design Information: Thermal Stability Scores
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Genetic algorithms are used to The simple (ML) and complex (Chemprop)
explore chemical space, using the models are both extremely proficient at
stability score as an objective guiding the search towards stable alkanes
function with a minimal number of branches

Savoie Research Group | Singla, V.; Zhao, Q.; Savoie, B. M. Chemrxiv. 2023, https://doi.org/10.26434/chemrxiv-2023-0pjxv



Actionable Design Information: Thermal Stability Scores

Great, so you have an alkane stability score...

This is just the foundation showing that half-life to stability
score Is a learnable task. It now becomes a data problem.

Teasers:

- Stability is stressor-specific and multi-dimensional, so
half-lives under other conditions are coming.

- We already see evidence that thermal stability scores are
predictive of degradation temperature for polymers.
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