

BESTMANN-OHIRA REAGENT CASE STUDY: ENSURING STORAGE AND TRANSPORTATION SAFETY FOR DIAZO CONTAINING MATERIALS

JEFFREY SPERRY

MAY 2024

©2024 Vertex Pharmaceuticals Incorporated

QUICK FACTS

Headquarters: **Boston**

***4,700** Employees worldwide (~3,800 in the U.S.)

 \$79B
 \$8.9B

 Market Cap
 2022

 (as of Feb. 2023)
 Revenue

©2023 Vertex Pharmaceuticals Incorporated

global.vrtx.com

THE BESTMANN-OHIRA REAGENT

Ohira, S. Synth. Commun., 1986, 19, 561

©2024 Vertex Pharmaceuticals Incorporated

S. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, Synlett, 1996, 521-522

THE BESTMANN-OHIRA REAGENT

Ohira, S. Synth. Commun., **1986**, *19*, 561

S. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, Synlett, 1996, 521-522

THE BESTMANN-OHIRA REAGENT - MECHANISM

BESTMANN-OHIRA REAGENT – DSC

©2024 Vertex Pharmaceuticals Incorporated

YOSHIDA CORRELATIONS

The Yoshida Correlation

A mathematical equation that correlates a materials onset temperature and energy from a DSC experiment to its ability to propagate an explosion and/or be shock sensitive

For explosive propagation (EP):

 $EP = \log (Q_{DSC}) - 0.38 \times \log(T_{DSC} - 25) - 1.67$

 Q_{DSC} is the energy of the exotherm in cal/g

 T_{DSC} is the onset temperature of the exotherm in °C

If $EP \ge 0$ material is predicted to demonstrate the ability to propagate and explosion

global.vrtx.com

The Yoshida Correlation

A mathematical equation that correlates a materials onset temperature and energy from a DSC experiment to its ability to propagate an explosion and/or be shock sensitive

For shock sensitivity (SS):

SS = $\log (Q_{DSC}) - 0.72 \times \log(T_{DSC} - 25) - 0.98$

 ${\rm Q}_{\rm DSC}$ is the energy of the exotherm in cal/g

 T_{DSC} is the onset temperature of the exotherm in °C

If $SS \ge 0$ material is predicted to demonstrate the ability to propagate and explosion

BESTMANN-OHIRA REAGENT – YOSHIDA CORRELATIONS

BESTMANN-OHIRA REAGENT – YOSHIDA CORRELATIONS

IMPACT TESTING

©2024 Vertex Pharmaceuticals Incorporated

BESTMANN-OHIRA REAGENT – IMPACT TESTING

- Sample is placed into cell
- Cell is secured on top on anvil
- 10 kg weight dropped from a measured height
- Possible experimental outcomes
 - Flame or visible light
 - Smoke
 - Audible noise above impact noise
 - Discoloration of sample

BESTMANN-OHIRA REAGENT – IMPACT TESTING

- Sample is placed into cell
- Cell is secured on top on anvil
- 10 kg weight dropped from a measured height
- Possible experimental outcomes
 - Flame or visible light
 - Smoke
 - Audible noise above impact noise
 - Discoloration of sample

Drop	Drop	Approximate	Trial Results								
Weight	Height	Impact Energy	1	2	3	4	5	6	Comments		
(kg)	(cm)	(J)	-	_			-	-			
10	100	100	NR	NR	NR	NR	NR	NR	No reaction		

FRICTION TESTING

©2024 Vertex Pharmaceuticals Incorporated

BESTMANN-OHIRA REAGENT – FRICTION TESTING

BAM Friction Load (N)											
Weight # and	Notch No.										
Mass* (kg)	1	2	3	4	5	6					
B1 (0.28)	5	6	7	8	9	10					
B2 (0.56)	10	12	14	16	18	20					
B3 (1.12)	20	24	28	32	36	40					
B4 (1.68)	30	36	42	48	54	60					
B5 (2.24)	40	48	56	64	72	80					
B6 (3.36)	60	72	84	96	108	120					
B7 (4.48)	80	96	112	128	144	160					
B8 (6.72)	120	144	168	192	216	240					
B9 (10.08)	180	216	252	288	324	360					

*The mass of the weight includes the mass of the hook

BESTMANN-OHIRA REAGENT – FRICTION TESTING

10.08

6

360

BAM Friction Load (N)											
Weight # and	Notch No.										
Mass* (kg)	1	2	3	4	5	6					
B1 (0.28)	5	6	7	8	9	10					
B2 (0.56)	10	12	14	16	18	20					
B3 (1.12)	20	24	28	32	36	40					
B4 (1.68)	30	36	42	48	54	60					
B5 (2.24)	40	48	56	64	72	80					
B6 (3.36)	60	72	84	96	108	120					
B7 (4.48)	80	96	112	128	144	160					
B8 (6.72)	120	144	168	192	216	240					
B9 (10.08)	180	216	252	288	324	360					

D D D D D D

*The mass	of the	weight	includes	the mass	of the	hool
-----------	--------	--------	----------	----------	--------	------

-

ACCELERATING RATE CALORIMETRY (ARC)

BESTMANN-OHIRA REAGENT – ARC

BESTMANN-OHIRA REAGENT – ARC

BESTMANN-OHIRA REAGENT – ARC

©2024 Vertex Pharmaceuticals Incorporated

BESTMANN-OHIRA REAGENT – DSC VERSUS ARC COMPARISON

ARC under nitrogen Onset T = 85 °C Heat Released = >**-2,383 J/g**

TMR AND SADT DETERMINATION

TMR AND SADT DEFINITION

<u>Time to Maximum Rate (TMR)</u>: The time between the start of a thermal runaway reaction and the maximum reaction rate (maximum self-heating rate).

<u>Self-Accelerating Decomposition Temperature (SADT)</u>: The lowest temperature that a mass of material, capable of an exothermic decomposition reaction, must be held such that the heat of decomposition exceeds the amount of energy lost to the surroundings. This will result in an increase in the mass temperature and acceleration of the decomposition reaction rate. SADT is package dependent.

AKTS TK AND TS SOFTWARE

Advanced Kinetics and Technology Solutions (AKTS) Thermokinetics (TK) and Thermal Safety (TS) software:

- Determination of the reaction rate $d\alpha/dt$ and reaction extent α evaluated from heat-flow signals
- Differential isoconversional analysis based on heat-flow signals
- Prediction of the influence of the atmospheric temperature profiles on the reaction course
- Prediction of the reaction course at customized temperatures
- Evaluation of Safety Parameters TMR and Safety Diagrams
- Simulation of ARC and Runaway Reactions, Determination , of SADT

https://www.akts.com/tk/thermokinetics-software-thermal-analysis-isoconversional-model-fitting-DSC-TG-short-description/ https://engineering.purdue.edu/P2SAC/research/documents/TemperatureMaximumRate.pdf

TMR and SADT can be predicted by extracting kinetic parameters from DSC, ARC, and TAM (thermal activity monitor) experiments (Reaction rate, activation energy, preexponential factor)

J. Loss Prev. Process Ind. 1997, 1, 31-41

https://akts.com/newsletter/docs/November-2009-Safety-Kinetics-Paper.pdf

DSC – collect at 3 different heating rates (0.5 °C/min, 1 °C /min, and 2 °C /min) under nitrogen and air
 ARC – under nitrogen
 TAM – under nitrogen

DSC – collect at 3 different heating rates (0.5 °C/min, 1 °C /min, and 2 °C /min) under	
ARC – under nitrogen	
TAM – under nitrogen	

Headspace	Ramp Rate (°C/min)	Left-Limit Onset Temp (°C)	Extrapolated Onset Temp (°C)	Peak Temp (°C)	Specific Heat of Reaction (-ΔH _R)
Nitrogen	0.5	73.4	109.9	131.9	2,248
Nitrogen	1.0	79.2	115.8	138.7	2,144
Nitrogen	2.0	85.2	122.0	145.8	2,190
Air	0.5	51.8	102.0	125.0	2,556
Air	1.0	55.2	117.0	136.9	2,407
Air	2.0	58.3	121.0	144.1	2,447

DSC – collect at 3 different heating rates (0.5 °C/min, 1 °C /min, and 2 °C /min) under nitrogen and air

ARC – under nitrogen

TAM – under nitrogen

Sample Name	Thermal Inertia, Φ (-)	Onset Temperature, T _o (°C)	Final Reaction Temperature, T _f (°C)	Observed Temperature Rise, ΔT _{obs} (°C)	Adiabatic Temperature Rise, ΔT _{ad} (°C)	Specific Heat of Reaction, $-\Delta H_R^1$ (J/g)
Dimethyl (1-Diazo- 2-Oxopropyl) Phosphonate	5.13 ¹	85.19	>392.76	>307.57	>1578	>2383

1: A specific heat capacity of 1.51 J/g/K was estimated using DIPPR [1]

$\begin{array}{c} O & O \\ & & P \\ & O \\ & O \\ N_2 \\ \end{array}$ Bestmann-Ohira Reagent

TMR AND SADT ESTIMATION

DSC – collect at 3 different heating rates (0.5 °C/min, 1 °C /min, and 2 °C /min) under nitrogen and air ARC – under nitrogen TAM – under nitrogen

25

TAM Experiment:

- Isothermal hold at 70 °C for 23 days
- Peak Heat Flow = 6.75E-4 W/g
- Measured $\Delta H_R = -584 \text{ J/g} (\sim 27\% \text{ of total energy})$

Apparent Pre-exponential Factor

©2024 Vertex Pharmaceuticals Incorporated

TMR RESULTS

©2024 Vertex Pharmaceuticals Incorporated

SAFETY DIAGRAMS – DSC IN AIR

SAFETY DIAGRAMS – DSC IN NITROGEN

SAFETY DIAGRAMS – DSC AND TAM IN NITROGEN

SAFETY DIAGRAMS – DSC AND ARC IN NITROGEN

TMR DATA

Time to Maximum Rate (hrs)	Temperature (°C) (DSC data in Air)	Temperature (°C) (DSC data in Nitrogen)	Temperature (°C) (DSC + TAM data in Nitrogen)	Temperature (°C) (DSC + ARC data in Nitrogen)
2	66.1	80.1	79.3	79.1
4	59.7	74.8	73.8	73.7
8	53.6	69.6	68.6	68.5
24	44.4	61.8	60.5	60.5

SADT DETERMINATION

©2024 Vertex Pharmaceuticals Incorporated

SADT CALCULATION

- The SADT, as defined by Test H.1 United States SADT test, is the lowest ambient temperature at which the center of the material within the package heats to a temperature 6°C greater than the environmental temperature after a lapse of a seven-day period or less
- This period is measured from the time when the temperature in the center of the packaging reaches 2°C below the ambient temperature
- The SADT is a measure of the combined effects of the ambient temperature, decomposition kinetics, package size, and the heat transfer properties of the substance and its packaging
- AKTS uses finite element analysis to solve heat balance equations and predict the temperature at any location within a package at any given time
- The sample is a liquid, and it is assumed to be well mixed
- Kinetic parameters from DSC and TAM experiments in nitrogen were used for this evaluation

Recommendations on the Transport of Dangerous Goods - Manual of Tests and Criteria, 6th revised edition, United Nations, ST/SG/AC.10/11/Rev.7, New York and Geneva, 2019.

Recommendations on the Transport of Dangerous Goods – Model Regulations, 21st revised edition, United Nations, ST/SG/AC.10/1/Rev.21, New York and Geneva, 2019.

SADT CALCULATION PARAMETERS

Parameter	15 kg Package	50 kg Package	1000 kg Package		
Package Material of Construction	Plastic	Plastic	Metal		
Mass of Reactant, kg	15	50	1000		
Density of Reactant, kg/m ³	1280				
Specific Heat of Reactant, J/kg/K	1510				
Heat Transfer Coefficient from Container, W/m ² /K	5	5	10		

SADT CALCULATION – 15 KILOGRAM LIQUID SPHERE

SADT CALCULATION – 50 KILOGRAM LIQUID SPHERE

©2024 Vertex Pharmaceuticals Incorporated

SADT CALCULATION – 1000 KILOGRAM LIQUID SPHERE

SADT CALCULATION – RESULTS FOR BESTMANN-OHIRA REAGENT

Container Size (kg)	Self-Accelerating Decomposition Temperature (°C)
15	65
50	62
1000	60

CONCLUSIONS

©2024 Vertex Pharmaceuticals Incorporated

CONCLUSIONS

 Bestmann-Ohira Reagent undergoes exothermic decomposition starting at 51 °C by DSC in air and 73 °C when the DSC is performed under a nitrogen headspace

- Bestmann-Ohira Reagent undergoes exothermic decomposition starting at 51 °C by DSC in air and 73 °C when the DSC is performed under a nitrogen headspace
- Although the reagent flagged as potentially shock sensitive and capable of explosive propagation by the Yoshida Correlations, the material is neither impact sensitive nor friction sensitive
 - U.N. Test Series 2 testing was not performed

Drop	Drop	Approximate	Trial Results							
Weight (kg)	Height (cm)	Impact Energy (J)	1	2	3	4	5	6	Comments	
10	100	100	NR	NR	NR	NR	NR	NR	No reaction	

O O P-OMe Me Bestmann-Ohira Reagent

- Bestmann-Ohira Reagent undergoes exothermic decomposition starting at 51 °C by DSC in air and 73 °C when the DSC is performed under a nitrogen headspace
- Although the reagent flagged as potentially shock sensitive and capable of explosive propagation by the Yoshida Correlations, the material is neither impact sensitive nor friction sensitive
 - U.N. Test Series 2 testing was not performed
- ARC testing revealed a thermal onset temperature of 85 °C (under nitrogen) and an accompanying adiabatic temperature rise of > 1,578 °C

O O P-OMe N₂ Bestmann-Ohira Reagent

- Bestmann-Ohira Reagent undergoes exothermic decomposition starting at 51 °C by DSC in air and 73 °C when the DSC is performed under a nitrogen headspace
- Although the reagent flagged as potentially shock sensitive and capable of explosive propagation by the Yoshida Correlations, the material is neither impact sensitive nor friction sensitive
 - U.N. Test Series 2 testing was not performed
- ARC testing revealed a thermal onset temperature of 85 °C (under nitrogen) and an accompanying adiabatic temperature rise of > 1,578 °C
- DSC, ARC and TAM tests were used to construct kinetic models for the decomposition

- Bestmann-Ohira Reagent undergoes exothermic decomposition starting at 51 °C by DSC in air and 73 °C when the DSC is performed under a nitrogen headspace
- Although the reagent flagged as potentially shock sensitive and capable of explosive propagation by the Yoshida Correlations, the material is neither impact sensitive nor friction sensitive
 - U.N. Test Series 2 testing was not performed
- ARC testing revealed a thermal onset temperature of 85 °C (under nitrogen) and an accompanying adiabatic temperature rise of > 1,578 °C
- DSC, ARC and TAM tests were used to construct kinetic models for the decomposition
- TMR and SADT values were calculated from these models

Time to Maximum Rate (hrs)	Temperature (°C) (DSC data in Air)	Temperature (°C) (DSC data in Nitrogen)	Temperature (°C) (DSC + TAM data in Nitrogen)	Temperature (°C) (DSC + ARC data in Nitrogen)
2	66.1	80.1	79.3	79.1
4	59.7	74.8	73.8	73.7
8	53.6	69.6	68.6	68.5
24	44.4	61.8	60.5	60.5

Container Size (kg)	Self-Accelerating Decomposition Temperature (°C)
15	65
50	62
1000	60

ACKNOWLEDGEMENTS

THE SCIENCE of POSSIBILITY

Shane Stone and Michael Azuma

Connect on LinkedIn