Low-Power, Low-Cost Gas Sensors: From Molecules to Modules

Bryan W. Boudouris Davidson School of Chemical Engineering and Department of Chemistry Purdue University

2022 Spring P2SAC Virtual Conference General Process Safety Session

Wednesday, May 11, 2022 Email: boudouris@purdue.edu; Twitter: @Boudouris_Group

Multi-disciplinary Team with Complementary Expertise

Post-Doctoral Research Associate: Xikang (Po) Zhao (ChemE); Nikhil Bajaj (ME); *Allison Murray (ME)* Graduate Students: **Zachary Siefker (ME)**; *Allison Murray (ME)*; **John Hodul (Chem); Joe Meseke (ME)**; **Nikhil Carneiro (ME)** Undergraduate Research Assistant: **Abhi Boyina (ME)**; <u>Eugenio Frias Miranda (ME)</u>; Nikhil Carneiro (ME); Katie Mao (ME); Joshua Jenkins (ME)

The Focus of Our Work is on Performance and Price

Mass Spectrometry

Gas Chromatography

MEMS Offer Low-Cost, Low-Energy Solutions

Ahmad Asri, M. I.; et al. IEEE Sens. J. 2021, 21, 18381–18397.

Gravimetric MEMS Sensors Have Potential Advantages

Sensor Type	Measurement Range	Size Footprint	Cost	Power Usage	Drawback		
Chemiresistive (Electrochemical)	< 0.1 ppm - 10,000 ppm	< 25 mm ²	< \$50	100 µW	Requires conductive materials to operate		
Metal Oxide (Electrochemical)	2,000 ppm - 50,000 ppm	< 25 mm ²	\$50 - \$75	200 mW	Requires elevated temperatures or extensive chemistry fabrication to operate		
Non-Dispersive IR (Optical)	< 0.1 ppm - 10,000 ppm	3 cm ²	\$100 - \$200	300 mW	Difficulty distinguishing and quantifying target analytes in the presence of other gas analytes (i.e., selectivity)		
Gravimetric (Electromechanical)	< 0.1 ppm - 10,000 ppm	< 25 mm ²	< \$50	60-100 mW	Can experience drift issues, need to be software algorithm and references	e accounted for through	
Analyte		02	0 ₂		IR Source	Analyte	
Conductive Chemistry	Electrode	Metal	Oxide	Electrode	Filter Detector	Chemistry Oscillator	
Chemiresisti	ve	Metal	Oxide		Non-Dispersive IR	<u>Gravimetric</u>	

- No one sensor class that can effectively detect every target gas analyte
- Minus NDIR, selectivity on device is driven through the surface chemistry
- Materials cost and processability are just as critical as performance!

16 Sensors Are Easily Printed on a Handheld Board

Sorption-based Detection Yields Common Sensing Signals

Time

Designing a Chemistry to Detect Carbon Dioxide

Siefker, Z.A.; Hodul, J.N.; et. al. Sci. Rep. 2021, 11, 13237.

CO₂ Sensor Responds Quickly under a Range of Conditions

Siefker, Z.A.; Hodul, J.N.; et. al. Sci. Rep. 2021, 11, 13237.

Selective Towards CO₂ Relative to Common Distractants

- The distractant gases (i.e., interfering analytes) spanned broad chemical composition and are potentially present in current practical Indoor Air Quality (IAQ) monitoring scenarios.
- <u>The distractant gases are at significantly higher concentrations than what would realistically</u> <u>be present when performing real indoor monitoring tests.</u>

Siefker, Z.A.; Hodul, J.N.; et. al. Sci. Rep. 2021, 11, 13237.

PEO Imparts Nano- and Microstructure to the PEI

Siefker, Z.A.; Hodul, J.N.; et. al. Sci. Rep. 2021, 11, 13237.

T Impacts Performance but can be Taken into Account

Siefker, Z.A.; Hodul, J.N.; et. al. ACS Appl. Polym. Mater. 2022, in press.

There is an Upper Temperature Limit

Heat Flow (Endo Up W/g)

As polymers melt, porous structure disappears, and amines are no longer accessible to interact with CO₂.

In turn, performance decreases.

Siefker, Z.A.; Hodul, J.N.; et. al. ACS Appl. Polym. Mater. **2022**, *in press*.

Integrated Sensors and the Final, Compact Product

Integrated Device Performs as Well as Standalone System

- External validation occurring currently at Michigan State University
- Commercial partners have the capability to scale to production level

Testing at the Center for High Performance Buildings

BUILDING TECHNOLOGY & Systems

Indoor Air Quality Testing Room

Prototype Sensor Works as Well as COTS Sensor

Different Chemistry Detects Flammable Refrigerants

- This detection required the simple printing of a polyaniline (PANI) ink to the top of the mass resonators.
- The customers were interested in detecting at higher concentrations (i.e., near the LFL of the refrigerant gases) based on safety standards.

Sensors Provide Robust Behavior to Different Conditions

- The examples shown are for R-32 detection, but they are applicable to a range of different gas chemistries.
- While there are slight changes to the response function for these different scenarios, they are consistent. Thus, simple calibrations can be used to correct when converting from frequency shift to concentration.

Room Temperature H₂ Sensing using Pd Nanosheets

- Chemistry involves simple Pd precursor materials and common ligands that are reacted at 80 °C to yield Pd nanosheets (PdNS), which are suspending in hexanes for printing.
- < 1 µg of PdNS (i.e., < \$0.01 per precursor materials) is used per device.

Acknowledgements

Boudouris Research Group

- Lizbeth Rostro (Dow); Aditya Baradwaj (Intel); Sanjoy Mukherjee (University of California, Santa Barbara); Seung Hyun Sung (LG); Varad Agarkar (Louisiana State University) Ned Tomlinson (Bostik); Martha Hay (Intel); Jaeyub Chung (University of Minnesota); Daniel Wilcox
- Ryan Mulvenna (Dow); Darby Hoss (Intel); Jennifer Laster (Intel); Teng Chi (University of Notre Dame); Xikang Zhao (Chinese National Petroleum **Corporation); Teng Chi (University of Notre Dame)** DARPA

Thank You To our Sponsors

- Jeff Rhoads (ME Purdue)
- Hari Subramani (Chevron)

- **Jim Braun**
- George Chiu
- David Corti
- Letian Dou
- Arsineh Hecobian
- Jianguo Mei
- **Brett Savoie**

CHANGING WHAT'S POSSIBLE

Purdue Process Safety & Assurance Center