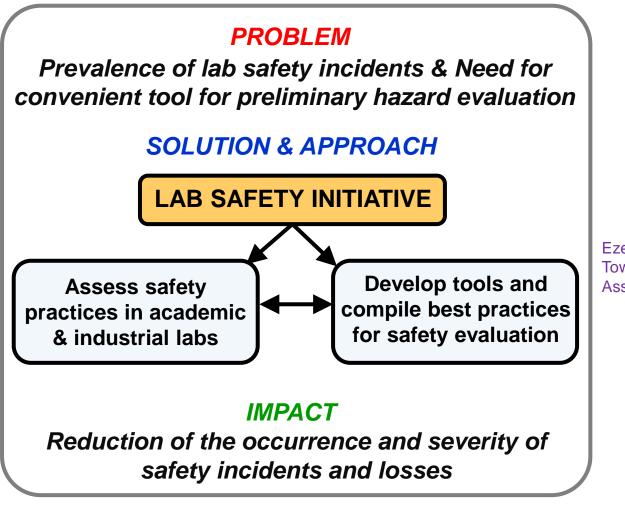


Demonstration of Reactive Hazards Evaluation & Analysis Compilation Tool (RHEACT)

Sopuru Ezenwa,¹ Jeremy Arvay,¹ Abhijit D. Talpade,¹ Pushkar Ghanekar,¹ Ravi Joshi,¹ Samuel Kravitz,² Anirudh Tunga,³ Vikrant Gajria,² Jay Devaraj,⁴ Fabio H. Ribeiro,¹ Ray Mentzer^{1,5}

¹Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
 ²Department of Computer Science, Purdue University, West Lafayette, IN, USA
 ³School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
 ⁴Corteva Agriscience, Indianapolis, IN, USA
 ⁵Purdue Process Safety and Assurance Center (P2SAC), West Lafayette, IN, USA

Purdue Process Safety and Assurance Center (P2SAC) Spring 2022 Conference – Day 1 (Tutorials) May 9, 2022 Virtual Meeting

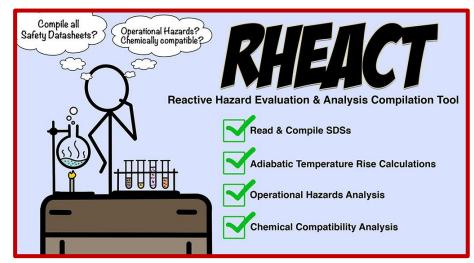

Safety incidents are still prevalent in chemical research laboratories

PROBLEM

Prevalence of lab safety incidents & Need for convenient tool for preliminary hazard evaluation

CSB Releases Laboratory Incident Data (Jan. 2001 - Jul. 2018) <u>https://www.csb.gov/csb-releases-laboratory-incident-data-jan-2001---jul-2018/</u> Kaufman, J. A. Memorial Wall - Killed in Lab Accident; Laboratory Safety Institute <u>https://www.labsafety.org/memorial-wall</u> Vidal, S. Safety First: A Recent Case of a Dichloromethane Injection Injury. *ACS Cent. Sci.* **2020**, *6*, 83–86. Juba, B. W. et al. Lessons Learned—Fluoride Exposure and Response. *ACS Chem. Health Saf.* **2021**, *28*, 129 <u>https://www.jconline.com/story/news/local/lafayette/2020/08/20/two-injured-purdue-university-explosion-chemistry-building/3401596001/</u> https://ehrs.upenn.edu/health-safety/lab-safety/safety-alerts-and-fags/vacuum-pump-explosion-chemistry-building

CISTAR/P2SAC initiative aims to improve lab safety practices

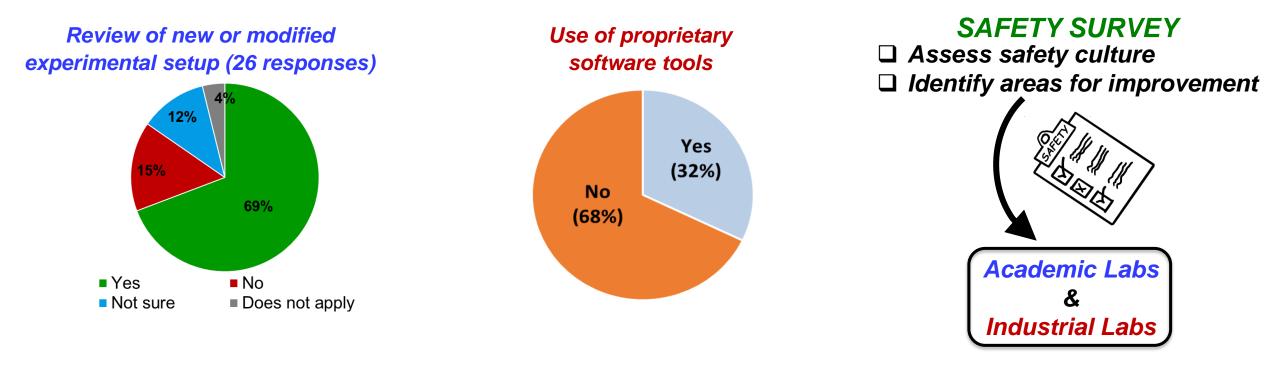


Ezenwa, S.;[#] Talpade, A. D.;[#] Ghanekar, P.; Joshi, R.; Devaraj, J.; Ribeiro, F. H.; Mentzer, R. Toward Improved Safety Cultures in Academic and Industrial Chemical Laboratories: An Assessment and Recommendation of Best Practices, *ACS Chem. Health Saf.* **2022**, *29*, 202

Talpade, A. D.;[#] Ghanekar, P.;[#] Ezenwa, S.; Joshi, R.; Kravitz, S.; Tunga, A.; Devaraj, J.; Ribeiro, F. H.; Mentzer, R. Promoting a Safe Laboratory Environment Using the Reactive Hazard Evaluation and Analysis Compilation Tool. *ACS Chem. Health Saf.* **2021**, *28*, 134²

Brief history of RHEACT

- Summer 2018: Purdue ChE Professional Masters Project with Dow AgroSciences (now Corteva Agriscience)
 - "A Systems Engineering Approach for Managing Changes in Chemical Process R&D Labs"
- October 2018: P2SAC/CISTAR Lab Safety Project formally initiated with funds from NSF
 - <u>Project Title</u>: Safety in Academic & Industrial Laboratories
 - Initial team: 2 Purdue ChE Profs., 1 industrial collaborator, 4 ChE PhD students
- May 2019: Tool development begins after addition of software programmer
- March 2021: RHEACT Alpha version (1.0) developed and made available for testing
- May 2022: RHEACT Beta version (2.0) developed


Excerpt from email soliciting Purdue CISTAR grad student participation (October 2018):

<u>University and R&D laboratory safety has been identified as an area of national concern that needs attention, following</u> <u>various well publicized mishaps and fatalities</u>. In light of conditions and hazardous materials encountered by universities engaged in CISTAR, safety-related materials and training will be required to ensure consistent expectations and application. A set of best practices and tools will be identified and developed based on a survey of the practices in the five universities associated with CISTAR, as well as a broader look at other universities and CISTAR and P2SAC member company labs. An Internet accessible App or Excel macro will be developed to compile a host of safety-related information to evaluate and understand all hazards before performing lab experiments.

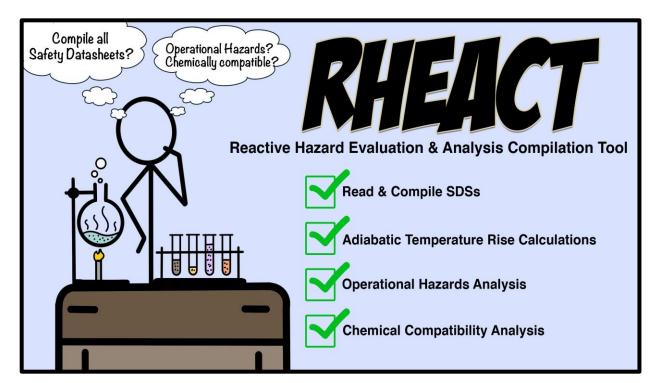
Surveys highlight hazard evaluation practices at academic and industrial labs

- Demographics of respondents:
 - Academic survey: Lab experience > 10 yr. (55%; mostly PI/faculty) or >4 yr. (90%; including grad students/postdocs)
 - Industrial survey: pharmaceuticals, (petro)chemicals, oil & gas, engineering, polymers, energy;

members or leaders of process safety groups or technical R&D groups

- Survey results further suggest that continued occurrence of lab incidents is potentially linked to:
 - Inadequate documentation of best practices
 - Limited tools for rapid preliminary analysis of safety risks in research labs

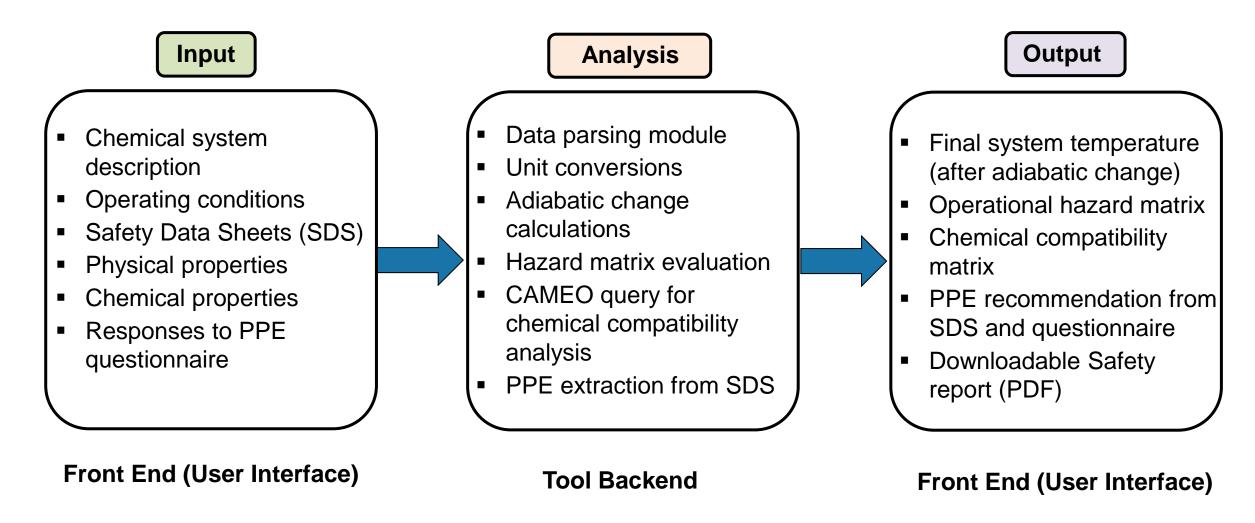
Ezenwa, S.;# Talpade, A. D.;# Ghanekar, P.; Joshi, R.; Devaraj, J.; Ribeiro, F. H.; Mentzer, R. ACS Chem. Health Saf. 2022

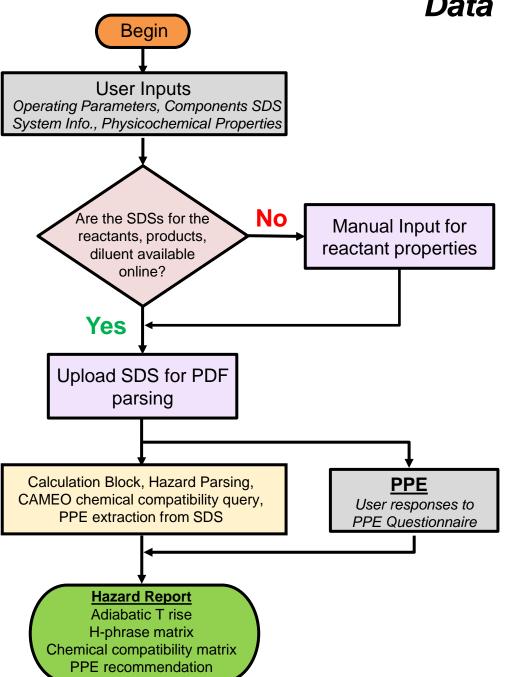

Industrial survey: Data, databases and tools used for hazard evaluation

- Common Hazards evaluated
 - Chemical reactivity
 - Toxicity and Flammability
 - Loss of containment
 - Thermal runaway
- Data collected for hazard evaluation
 - Thermal stability and heat of reaction
 - flammability limit, toxic levels of concern
 - Physical and chemical properties, Operating conditions (temperature, pressure, flow)
- Databases consulted: Safety Data Sheets (SDS), Bretherick's Handbook, NIOSH, NIST, Scifinder, Internal databases
- Software tools used: CAMEO Chemicals, Chemical Reactivity Worksheet (CRW), Risk Analysis and Screening tool (RAST), Chemical Thermodynamic and Energy Release Evaluation Program (CHETAH), DYNOCHEM, in-house tools
- Some identified challenges during hazard evaluation:
 - Inconvenience of accessing multiple tools and databases
 - Lack of streamlined procedure
 - Limited functionalities in major tools for chemical compatibility checks or PPE guidance

Development of a convenient hazard evaluation tool for research labs

- Common software tools: CRW, RAST, CHETAH, CAMEO, CHEF
- Need for development of a convenient web tool that can:
 - Collect critical information about planned experiment
 - Conduct preliminary operational hazard analysis
 - Summarize potential safety issues and best practices
- Target users:
 - Academic chemical research and teaching labs
 - Small and mid-size enterprises' (SME) R&D labs

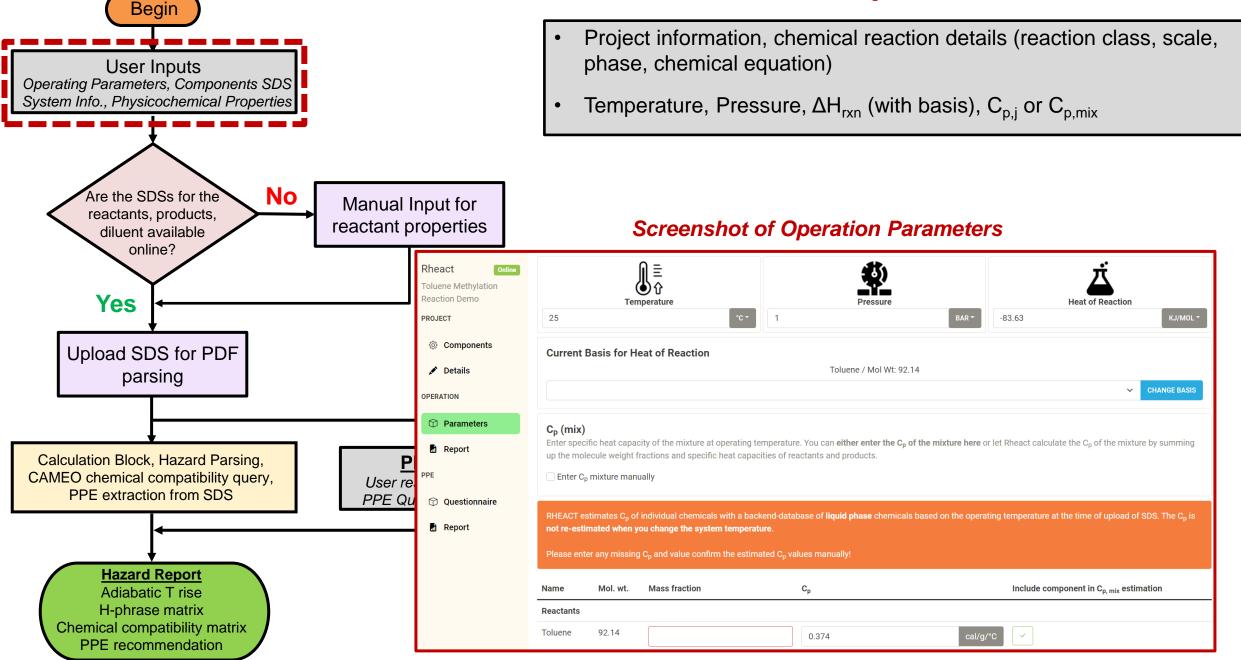

We aim for RHEACT to be a quick preliminary screening tool that alerts users about hazards and pushes them to perform further analysis.



Talpade, A. D.;[#] Ghanekar, P.;[#] Ezenwa, S.; Joshi, R.; Kravitz, S.; Tunga, A.; Devaraj, J.; Ribeiro, F. H.; Mentzer, R. Promoting a Safe Laboratory Environment Using the Reactive Hazard Evaluation and Analysis Compilation Tool. ACS Chem. Health Saf. 2021, 28, 134

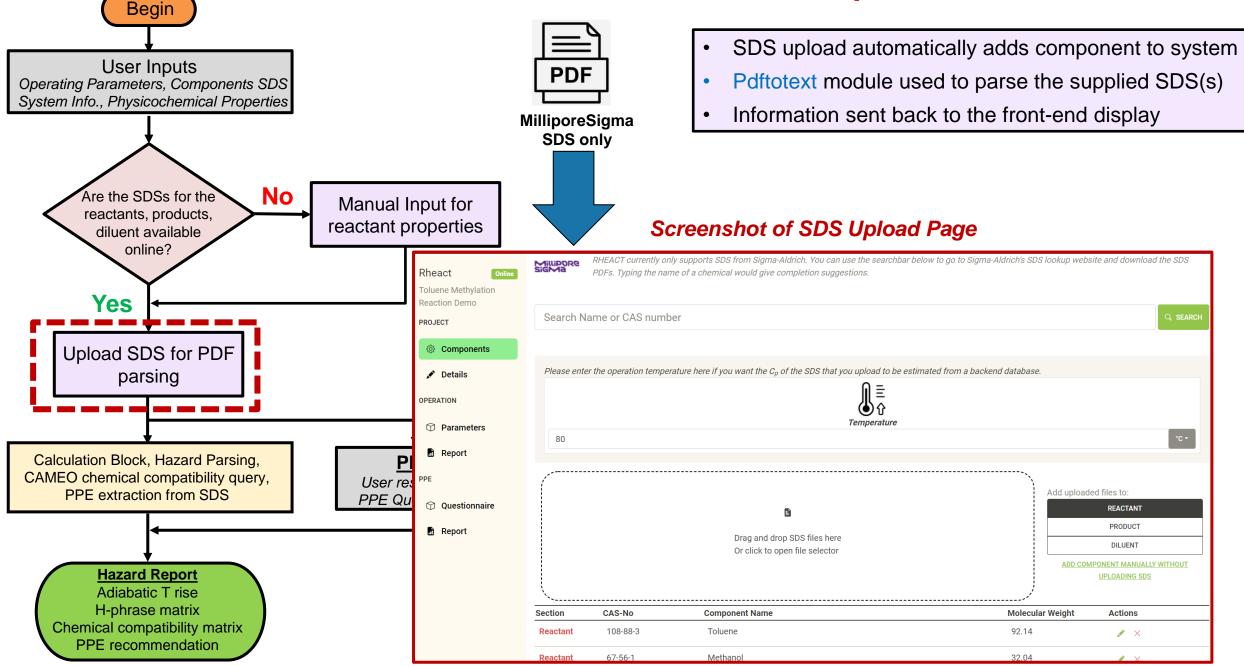
RHEACT overall workflow

Process Block Diagram for RHEACT

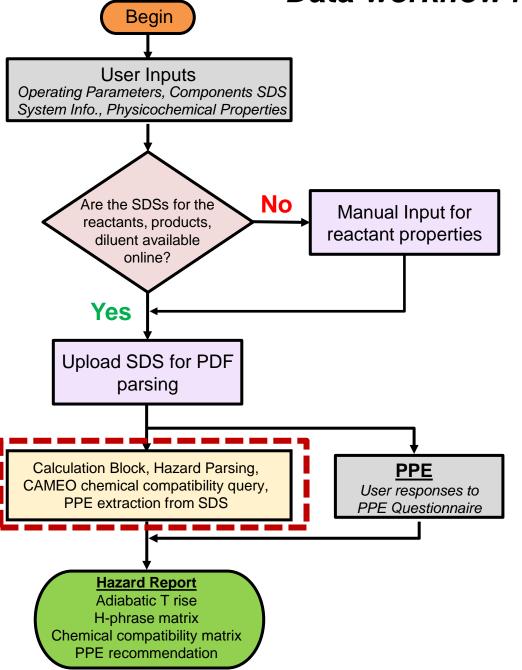


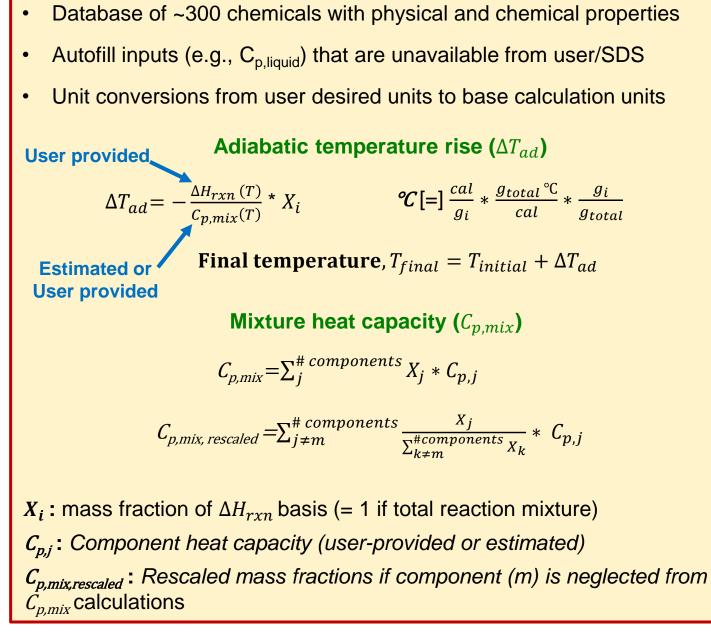
Data workflow for RHEACT

Data workflow for RHEACT: User Inputs



Data workflow for RHEACT: User Inputs


10


Data workflow for RHEACT: SDS Upload

11

Data workflow for RHEACT: Calculation Block

Data workflow for RHEACT: **Operational hazard matrix**

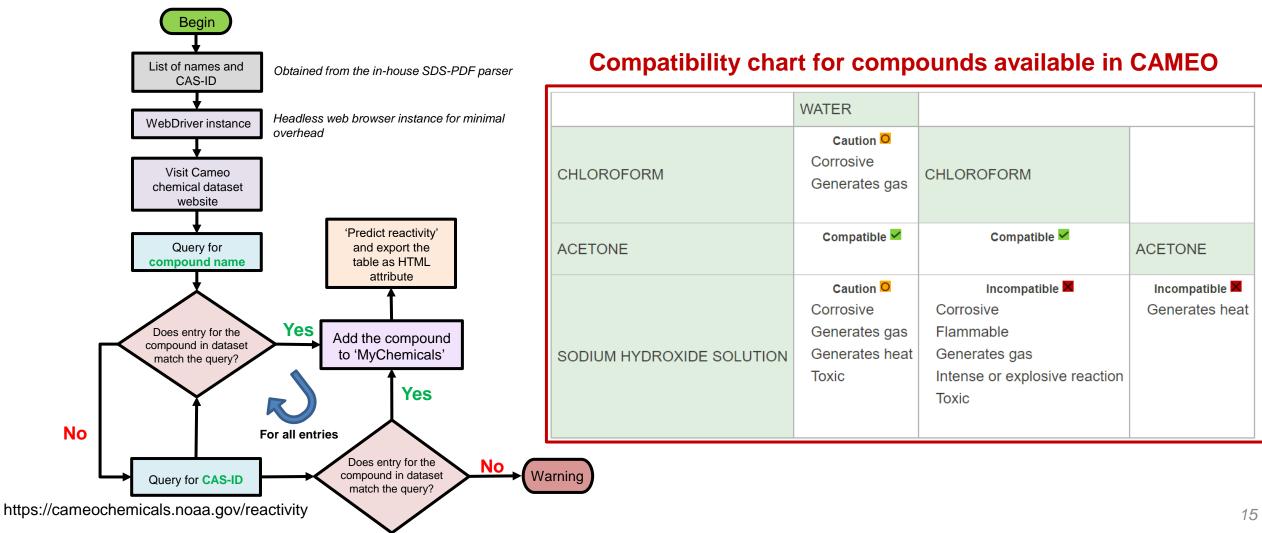
• Parse H-phrases (Hazard statements) from uploaded SDS

Hazard Statements

Name	H-Number	H-Statement
Water		
Chloroform	H302 H331 H315 H319 H351 H361 H336 H372 H402 H412	Acute toxicity, Oral (Category 4) Acute toxicity, Inhalation (Category 3) Skin irritation (Category 2) Eye irritation (Category 2A) Carcinogenicity (Category 2) Reproductive toxicity (Category 2) Specific target organ toxicity - single exposure (Category 3), Central nervous system Specific target organ toxicity - repeated exposure (Category 1), Liver, Kidney Short-term (acute) aquatic hazard (Category 3) Long-term (chronic) aquatic hazard (Category 3)
Acetone	H225 H319 H336	Flammable liquids (Category 2) Eye irritation (Category 2A) Specific target organ toxicity - single exposure (Category 3), Central nervous system
Sodium hydroxide	H290 H314 H318 H402	Corrosive to Metals (Category 1) Skin corrosion (Category 1A) Serious eye damage (Category 1) Short-term (acute) aquatic hazard (Category 3)

Data workflow for RHEACT: **Operational hazard matrix**

- Parse H-phrases (Hazard statements) from uploaded SDS
- Implemented a logic for categorizing each H-phrase into operational hazards
- Severity assigned for each operational hazard expressed as a color code


Hazard Matrix

Name	Flammability	Reactivity	Skin absorption	Skin contact	Eye contact	Respiratory	Carcinogen	Reproductive hazard	Sensitizer	Ingestion	Other
Water	~	<	>	~	~	~	<	~	~	~	~
Chloroform	~	<	>	Δ	0	×	×	0	~	0	×
Acetone	×	<	~	~	0	\bigtriangleup	<	~	~	~	~
Sodium hydroxide	~	Δ	~	×	×	0	۲	~	~	×	~
Legend: 🗸 Safe 🔥 Caution 🜔 Warning 🔀 Danger											

Compile and visualize all the Hazards in a condensed format

Data workflow for RHEACT: Chemical Compatibility matrix

- Queries CAMEO chemical reactivity assessment tool to simulate pair-wise interactions of chemicals
- Selenium WebDriver automates web browser interaction between RHEACT and CAMEO website
- The generated matrix is imported into RHEACT

Data workflow for RHEACT: **PPE recommendation**

• PPE extracted from MilliporeSigma SDS (Section 8.2)

PPE Extraction from SDS

	Water (7732-18-5)	Acetone (67-64-1)
SEC	TION 7: Handling and storage	8.2 Exposure controls
	Precautions for safe handling For precautions see section 2.2.	Appropriate engineering controls Change contaminated clothing. Preventive skin protection recommended. Wash hands after working with substance.
7.2	Conditions for safe storage, including any incompatibilities	Personal protective equipment
	Storage conditions No special storage conditions required. Storage class (TRGS 510): 10: Combustible liquids	Eye/face protection Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU). Safety glasses
7.3	Specific end use(s) Apart from the uses mentioned in section 1.2 no other specific uses are stipulated	SIGALD - 179124 Page 5 of 12
SEC	TION 8: Exposure controls/personal protection	The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada
8.1	Control parameters	
	Ingredients with workplace control parameters Contains no substances with occupational exposure limit values.	
8.2	Exposure controls	
	Appropriate engineering controls not required	Skin protection This recommendation applies only to the product stated in the safety data sheet,
	Personal protective equipment	supplied by us and for the designated use. When dissolving in or mixing with other
	Eye/face protection not required	substances and under conditions deviating from those stated in EN374 please contact the supplier of CE-approved gloves (e.g. KCL GmbH, D-36124 Eichenzell, Internet: www.kcl.de).
	Skin protection not required	Full contact Material: butyl-rubber Minimum layer thickness: 0.7 mm Break through time: 480 min Material tested:Butoject® (KCL 898)

This recommendation applies only to the product stated in the safety data sheet,

Data workflow for RHEACT: PPE recommendation

• PPE questionnaire (20 questions) provides additional application-specific PPE suggestions

PPE Questionnaire

This questionnaire will help you conisider PPE that may be relevant to your process. Please consult the Hazard and Chemical Compatibility Matrix before answering the following questions! These matrices a Operations Report page.	e in the
Is your selected PPE constructed from materials that are compatible with the chemicals you're using? (Link to material compatibility, e.g. www.coleparmer.com/chemical-resistance)	YES NO
Are you working with large quantities of chemicals which are high skin adsorbant, skin/eye irritants and may splash during the experiment? (Larger quantities of liquid)	YES NO
Are you working with large quantities of chemicals which are skin irritants, there is a skin absorption risk leading to other hazards (organ damage, etc.), which may splash during the experiment? Are you working with high pressure systems, pressurized equipment, or in other scenarios where there is a potential for rupture, splash, spray or risk of flying debris?	YES NO
Are you working with lasers or other sources of intense radiation?	YES NO
Are you working with flammable or other pyrophoric reagents? Are you working with open flames or other	VES NO

Data workflow for RHEACT: PPE recommendation

• PPE questionnaire (20 questions) provides additional application-specific PPE suggestions

PPE Suggestions

	Typical Minimum PPE			
	Safety glasses with side shields			
	General lab coat			
	Long pants			
PPE Questionnaire	Close-toed shoes			
	Nitrile gloves (most but not all cases)			
This questionnaire will help you conisider PPE that may be relevant to your process.	Recommendations from Questionnaire			
Please consult the Hazard and Chemical Compatibility Matrix before answering the following questions! T Operations Report page.	Chemical splash goggles, chemical-resistant lab coat Are you working with large quantities of chemicals which are high skin adsorbant, skin/eye irritants and may splash during the experiment? (Larger quantities of liquid)			
Is your selected PPE constructed from materials that are compatible with the chemicals you're using? (L material compatibility, e.g. www.coleparmer.com/chemical-resistance)	General (For all PPE) Is your selected PPE constructed from materials that are compatible with the chemicals you're using? (Link to material compatibility, e.g. www.coleparmer.com/chemical- resistance)			
Are you working with large quantities of chemicals which are high skin adsorbant, skin/eye irritants and i splash during the experiment? (Larger quantities of liquid)	Face shield Are you working with large quantities of chemicals which are skin irritants, there is a skin absorption risk leading to other hazards (organ damage, etc.), which may splash during the experiment? Are you working with high pressure systems, pressurized equipment, or in other scenarios where there is a potential for rupture, splash, spray or risk of			
Are you working with large quantities of chemicals which are skin irritants, there is a skin absorption risk other hazards (organ damage, etc.), which may splash during the experiment? Are you working with high systems, pressurized equipment, or in other scenarios where there is a potential for rupture, splash, spray flying debris?	pressure VES NO			
Are you working with lasers or other sources of intense radiation?	YES NO			
Are you working with flammable or other pyrophoric reagents? Are you working with open flames or other significant sources of heat/energy?	YES NO			

Some case studies to validate and demonstrate RHEACT capabilities

- University of Hawaii Incident (March 2016)
- Sodium Azide Explosions
- University of Pennsylvania Chemistry Building Incident (August 2020)
- T2 Laboratories incident (December 2007) : killed 4, injured 32, and destroyed multiple businesses
 - demonstrates RHEACT utility beyond lab & pilot plant
 - studied as a case study for RAST (Risk Analysis Screening Tool)^[2]

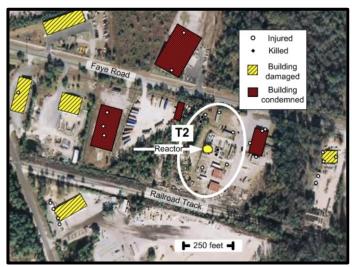
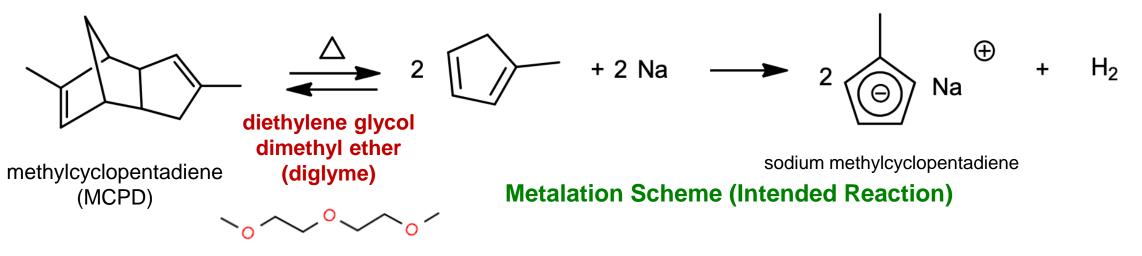



Photo courtesy: The U.S. Chemical Safety Board. T2 Laboratories Inc. Reactive Chemical Explosion.

Talpade, A. D.;[#] Ghanekar, P.;[#] Ezenwa, S.; Joshi, R.; Kravitz, S.; Tunga, A.; Devaraj, J.; Ribeiro, F. H.; Mentzer, R. *ACS Chem. Health Saf.* **2021**, *28*, 134 The U.S. Chemical Safety Board Investigation Report (2009). T2 Laboratories Inc. Runaway Reaction. <u>https://www.csb.gov/t2-laboratories-inc-reactive-chemical-explosion/</u> <u>https://www.aiche.org/ccps/resources/tools/risk-analysis-screening-tool-rast-and-chemical-hazard-engineering-fundamentals-chef/case-studies</u>

Case Study: T2 Laboratories explosion and fire (Jacksonville, FL; Dec. 2007)

- MCMT (gasoline additive) produced in a batch reactor in three steps
- The first step of the reaction (metalation reaction) requires heating to initiate the reaction
- All other steps are exothermic (heat-producing) and required cooling

Some key findings (CSB Final report. 2009) :

- 1. Desired exothermic reaction in the metalation step ran away due to a cooling system failure, leading to undesired exothermic decomposition of diglyme solvent.
- 2. Pressure relief system designed only for normal operating conditions
- 3. Personnel likely unaware of the solvent decomposition that occurred in the batch recipe at high temperatures.

Talpade, A. D.;* Ghanekar, P.;* Ezenwa, S.; Joshi, R.; Kravitz, S.; Tunga, A.; Devaraj, J.; Ribeiro, F. H.; Mentzer, R. ACS Chem. Health Saf. 2021, 28, 134https://www.aiche.org/ccps/resources/tools/risk-analysis-screening-tool-rast-and-chemical-hazard-engineering-fundamentals-chef/case-studiesThe U.S. Chemical Safety Board Investigation Report (2009). T2 Laboratories Inc. Runaway Reaction. https://www.csb.gov/t2-laboratories-inc-reactive-chemical-explosion/

1. Upload SDS and Setup metalation reaction conditions in RHEACT

	SAVE 🗬 LOAD	-			
Laboratories Case	Millipore		y supports SDS from Sigma-Aldrich. You can use the searc chemical would give completion suggestions.	hbar below to go to Sigma-Aldrich's SDS lookup website and download the SDS h	PDFs.
DJECT					
S Components	Search I	Name or CAS numbe	er	Q si	EARCH
Details					
ERATION	Please en	ter the operation tempera	ature here if you want the C_p of the SDS that you upload to	be estimated from a backend database.	
Parameters			E Temperatu		
Report	150		Temperau	···	-
E					
2 Questionnoire	·			×	
Questionnaire				Add uploaded files to:	
Report			Đ	REACTANT	
			Drag and drop SDS files here	PRODUCT	
			Or click to open file selector	DILUENT	
				ADD COMPONENT MANUALLY WITHOU	л
	l l			UPLOADING SDS	
	Section	CAS-No	Component Name	Molecular Weight Actions	
	Reactant	26472-00-4	Methylcyclopentadiene dimer	160.26 💉 🗙	
	Reactant	112-36-7	Diethylene glycol diethyl ether	162.23 💉 🗙	
	Reactant	7440-23-5	Sodium	22.99 💉 🗙	
	Product	1333-74-0	Hydrogen	2.02 💉 🗙	
	Product	4984-82-1	Sodium cyclopentadienylide	88.08 💉 🗙	

Talpade, A. D.;[#] Ghanekar, P.;[#] Ezenwa, S.; Joshi, R.; Kravitz, S.; Tunga, A.; Devaraj, J.; Ribeiro, F. H.; Mentzer, R. ACS Chem. Health Saf. 2021, 28, 134

1. Upload SDS and Setup metalation reaction conditions in RHEACT

	SAVE 🔶 LOAD							
Rheact Online					45			
T2 Laboratories Case Study		∭ ≡			(6)		π	
PROJECT		မြို့ကို Temperatu	re		Pressure		Heat of Reaction	
Components		150		•c - 3.45		bar - 217	J/G ~	
💉 Details		Current Basis for Heat of	Reaction					
OPERATION					Total Reaction Mass			
Parameters		Total Reaction Mass					✓ CHANGE BASIS	
Report		C _p (mix)						
		Enter specific heat capacity of th				e mixture here or let Rheact	t calculate the C_p of the mixture by summing up	
PPE		the molecule weight fractions an	u specific nea	at capacities of react	ants and products.			
🗇 Questionnaire		Enter C _p mixture manually						
🗟 Report								
					Mixture Heat Capacity			
		0.6 CAL/G/°C -						
		Since you have entered in the C_p	mixture, you	do not need to enter	individual component C _p . However,	do enter the mass fractions	S.	
		Name	Mol. wt.	Mass fraction	C _p		Include component in $C_{p,mix}$ estimation	
		Reactants						
		Methylcyclopentadiene dimer	160.26	0.44		cal/g/°0	c 🗸	
		Diethylene glycol diethyl ether	162.23	0.45		cal/g/°0	c 🗸	
		Sodium	22.99	0.11		cal/g/°0	c 🗸	

Talpade, A. D.;[#] Ghanekar, P.;[#] Ezenwa, S.; Joshi, R.; Kravitz, S.; Tunga, A.; Devaraj, J.; Ribeiro, F. H.; Mentzer, R. ACS Chem. Health Saf. 2021, 28, 134

1. Upload SDS and Setup metalation reaction conditions in RHEACT

Side Reactions		
+ ADD		Enter the known side-reactions and their onset details.
Side Reaction 1		X DELETE
Temperature Onset	Pressure Onset	
1 70	© 2°	bar
Side Reaction Description		
i Diglyme solvent decomposition		

2. H-phrase parsing and generation of Hazard Matrix

Rheact Online	Hazard Statement	Hazard Statements						
T2 Laboratories Case Study	Name	H-Number	H-Statement					
PROJECT	Methylcyclopentadiene dimer	H226 H340 H350 H361	Flammable liquids (Category 3) Germ cell mutagenicity (Category 1B) Carcinogenicity (Category 1A) Reproductive toxicity (Category 2)					
💉 Details	Diethylene glycol diethyl ether	H227 H315	Flammable liquids (Category 4) Skin irritation (Category 2)					
OPERATION	Sodium	H260 H314 H318	Substances and mixtures which in contact with water emit flammable gases (Category 1) Skin corrosion (Category 1B) Serious eye damage (Category 1)					
Report	Hydrogen	H220 H280	Flammable gases (Category 1) Gases under pressure (Compressed gas)					
🕆 Questionnaire	Sodium cyclopentadienylide	H260 H314 H318	Chemicals which, in contact with water, emit flammable gases (Category 1) Skin corrosion (Category 1B) Serious eye damage (Category 1)					
🚡 Report								

- RHEACT highlights significant flammability and reactivity hazards
- H-matrix can guide PPE selection, engineering and administrative controls

Name	Flammability	Reactivity	Skin absorption	Skin contact	Eye contact	Respiratory	Carcinogen	Reproductive hazard	Sensitizer	Ingestion	Other		
Methylcyclopentadiene dimer	0	~	~	~	~	×	×	×	~	~	~		
Diethylene glycol diethyl ether	Δ	~	~	Δ	~	>	>	~	~	~	~		
Sodium	~	×	~	×	×	0	~	~	~	×	~		
Hydrogen	×	Δ	~	~	~	~	~	~	~	~	~		
Sodium cyclopentadienylide	~	×	~	×	×	0	~	~	~	×	~		
			Legend:	Legend: 🗸 Safe 🔼 Caution 🧿 Warning 🗙 Danger									

Talpade, A. D.;[#] Ghanekar, P.;[#] Ezenwa, S.; Joshi, R.; Kravitz, S.; Tunga, A.; Devaraj, J.; Ribeiro, F. H.; Mentzer, R. ACS Chem. Health Saf. 2021, 28, 134

3. Pairwise Chemical Compatibility

	METHYLCYCLOPENTADIENE DIMER, [LIQUID]						
DIETHYLENE GLYCOL DIETHYL ETHER	Caution ^O Potentially hazardous	DIETHYLENE GLYCOL DIETHYL ETHER					
SODIUM	Incompatible Generates heat Polymerization hazard	Incompatible Corrosive Flammable Generates heat	SODIUM				
HYDROGEN	Caution Generates heat Potentially hazardous	Compatible 🗹	Incompatible Explosive Generates heat Intense or explosive reaction				
nerated using the CAMEO chemicals tool available onlir	ed using the CAMEO chemicals tool available online. For more information, check https://cameochemicals.noaa.gov/						

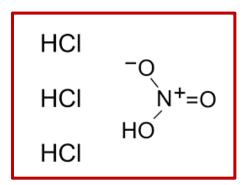
- Incompatibility of sodium and diethylene glycol dimethyl ether (diglyme) is evident from compatibility analysis
- Similar preliminary analysis could help researchers identify key risk areas
- Users are directed to go to CAMEO Chemicals to learn more about the safety of the mixture system

4. Adiabatic temperature change calculations and Safety Alerts

RheactOnlineT2 Laboratories CaseStudyPROJECTImage: ComponentsImage: ComponentsImage: Details	CLICK HERE TO GENERATE REPORT	$iethylcyclopentadiene (MCPD)$ $iethylene glycol dimethyl ether (diglyme) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
OPERATION Parameters Report	Report Alerts	Operating temperature: 150°C
PPE Questionnaire Report	Reactant Alerts Final temp exceeds reactant Methylcyclopentadiene dimer boiling point Final temp exceeds reactant Methylcyclopentadiene dimer flash point Final temp exceeds reactant Diethylene glycol diethyl ether boiling point Final temp exceeds reactant Diethylene glycol diethyl ether flash point Final temp exceeds reactant Sodium flash point	T _{final} following adiabatic change exceeds b.p. of certain reactants and products T _{final} following adiabatic change exceeds secondary reaction onset
	Product Alerts Final temp exceeds product Hydrogen flash point	(diglyme solvent decomposition @ 190°C)
	Process Alerts Final temp exceeds side reaction1 temperature onset	ΔT_{ad} calculations using RHEACT provide preliminary caution and urge the user to undertake additional hazard review
	Final TemperatureAdiabatic Temperature Change236.44 °C86.44 °C	Users must know the process chemistry

Talpade, A. D.;[#] Ghanekar, P.;[#] Ezenwa, S.; Joshi, R.; Kravitz, S.; Tunga, A.; Devaraj, J.; Ribeiro, F. H.; Mentzer, R. ACS Chem. Health Saf. 2021, 28, 134

• Aqua regia: mixture of HNO₃ and HCl in 1:3 molar ratio


Chemical reactions during Aqua regia preparation

 $HNO_3 + 3 HCI \rightarrow NOCI (g) + Cl_2 (g) + 2 H_2O$ $2 NOCI (g) \rightarrow 2 NO (g) + Cl_2 (g)$ $2 NO (g) + O_2 (g) \rightarrow 2 NO_2 (g)$

- Used in various academic and industrial applications
 - Refining gold
 - Etching in microfabrication and microelectronics
 - Cleaning lab glassware of organic compounds and metal residues
- Implicated in several accidents due to mishandling
- Many (but not all) institutions have safety protocols for handling aqua regia
- RHEACT will be used to simulate preliminary hazard analysis in an academic lab
 - Assumption: User has limited knowledge of the dangers of working with Aqua Regia

Photo courtesy: Enyclopaedia Britannica (@thejohnnler)

1. Upload SDS and Setup reaction conditions in RHEACT

		-			
Rheact Online	SAVE 💠 LOAD				SENE
Aqua regia case study PROJECT	Millipore		y supports SDS from Sigma-Aldrich. You can use the sear chemical would give completion suggestions.	chbar below to go to Sigma-Aldrich's SDS lookup web	site and download the SDS PDFs.
 Components Details 	Search Na	ame or CAS numbe	er		Q SEARCH
DPERATION		at at a			
Parameters	Please ente	r the operation tempera	ature here if you want the C_p of the SDS that you upload to $\prod \equiv$		
Report				}	
PPE	25		Tempera	ure	°C -
Questionnaire					
Report			Drag and drop SDS files here Or click to open file selector		Anded files to:
	Section	CAS-No	Component Name	 Molecular Weight	Actions
	Reactant	7697-37-2	Nitric acid	63.01	* ×
	Reactant	7647-01-0	Hydrochloric acid	36.458	× ×

2. H-phrase parsing and generation of Hazard Matrix

Name	H-Number	H-Statement
Nitric acid	H272 H290 H331 H314 H318	Oxidizing liquids (Category 3) Corrosive to Metals (Category 1) Acute toxicity, Inhalation (Category 3) Skin corrosion (Category 1A) Serious eye damage (Category 1)
Hydrochloric acid	H290 H314 H318 H335	Corrosive to Metals (Category 1) Skin corrosion (Category 1B) Serious eye damage (Category 1) Specific target organ toxicity - single exposure (Category 3), Respiratory system

Name	Flammability	Reactivity	Skin absorption	Skin contact	Eye contact	Respiratory	Carcinogen	Reproductive hazard	Sensitizer	Ingestion	Other
Nitric acid	~	0	~	×	×	×	>	~	~	×	~
Hydrochloric acid	~	Δ	<	×	×	0	~	~	~	×	~
Legend: 🗸 Safe 🛆 Caution 🔿 Warning 🗙 Danger											

The user is quickly alerted to handling hazards associated with aqua regia preparation

3. Pairwise Chemical Compatibility

		NITRIC ACID, RED FUMING				
F	HYDROCHLORIC ACID, SOLUTION	Incompatible Corrosive Explosive Flammable Generates gas Generates heat Intense or explosive reaction Toxic				
Generated using the CAMEO chemicals tool available online. For more information, check						
https://came	eochemicals.noaa.gov/					

RHEACT further leverages CAMEO to alert user to gas generation potential during process

4. PPE suggestion from extracted SDS pages

PROJECT						
② Components		TION 8: Exposure Control paramet	ers			
🖍 Details		Ingredients with Component	CAS-No.	Value	Control	Basis
		component	Cho no.	value	parameters	0033
ERATION		nitric acid	7697-37-2	TWA	2 ppm	USA. ACGIH Threshold Limit Values (TLV)
Parameters				STEL	4 ppm	USA. ACGIH Threshold Limit Values (TLV)
Report				ST	4 ppm 10 mg/m3	USA. NIOSH Recommended Exposure Limits
PE				TWA	2 ppm 5 mg/m3	USA. NIOSH Recommended Exposure Limits
Questionnaire				TWA	2 ppm 5 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants
🖥 Report				PEL	2 ppm 5 mg/m3	California permissible exposure limits for chemical contaminants (Title 8, Article 107)
				STEL	4 ppm 10 mg/m3	California permissible exposure limits for chemical contaminants (Title 8, Article 107)
	8.2	Exposure contro	ls	GC		
		Appropriate eng Immediately chan hands and face aft	ge contamina	ted clothin		ive skin protection. Wash
		Personal protect				

Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU). Tightly fitting safety goggles

Skin protection required

Body Protection

protective clothing

Respiratory protection

required when vapours/aerosols are generated. Our recommendations on filtering respiratory protection are based on the following standards: DIN EN 143, DIN 14387 and other accompanying standards relating to the used respiratory protection system.

Control of environmental exposure

Do not let product enter drains.

SIGALD - 438073

Page 5 of 10

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

Hydrochloric acid (7647-01-0)

8.2 Exposure controls

Appropriate engineering controls

Immediately change contaminated clothing. Apply preventive skin protection. Wash hands and face after working with substance.

Personal protective equipment

Eye/face protection

Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU). Tightly fitting safety goggles

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact Material: Nitrile rubber Minimum layer thickness: 0.4 mm Break through time: 480 min Material tested:Camatril® (KCL 730 / Aldrich Z677442, Size M)

Splash contact Material: Nitrile rubber Minimum layer thickness: 0.11 mm Break through time: 69 min Material tested:Dermatril® (KCL 740 / Aldrich Z677272, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374 If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the EC approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

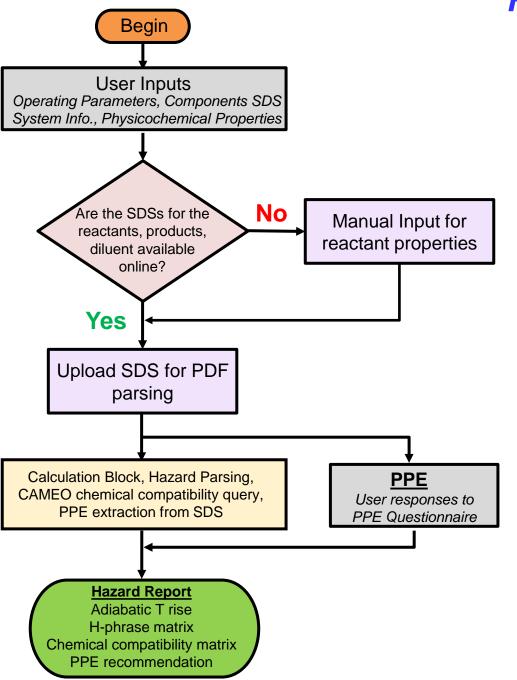
Body Protection

protective clothing

SIGALD - 320331

Page 5 of 11

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

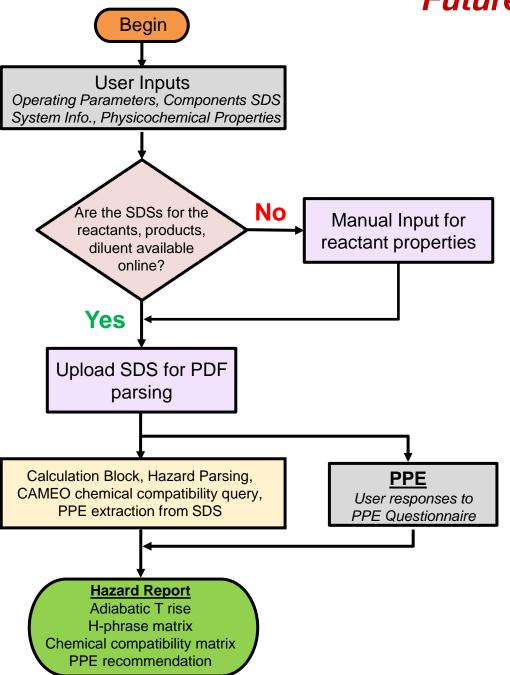

Respiratory protection

required when vapours/aerosols are generated. Our recommendations on filtering respiratory protection are based on the following standards: DIN EN 143, DIN 14387 and other accompanying standards relating to the used respiratory protection system.

4. PPE suggestion from questionnaire

Typical Minimum PPE	
Safety glasses with side shields	
General lab coat	
Long pants	
Close-toed shoes	
Nitrile gloves (most but not all cases)	
Recommendations from Questionnaire	
Chemical splash goggles, chemical-resistant lab coat	
Are you working with large quantities of chemicals which are high skin adsorbant, skin/eye irritants and may splash during the experiment? (Larger quantities of liquid	(L
Face shield	
Are you working with large quantities of chemicals which are skin irritants, there is a skin absorption risk leading to other hazards (organ damage, etc.), which may sp the experiment? Are you working with high pressure systems, pressurized equipment, or in other scenarios where there is a potential for rupture, splash, spray or risk debris?	
Chemical resistant apron (over lab coat), shoe covers, gloves for heavy chemical protection	
Are you working with larger quantities of extremely hazardous chemicals which may spill or splash? (e.g., acid digestion procedures)	
Heavy chemical protection gloves (e.g. thicker nitrile, rubber, SilverShield)	
Are you working with large volumes of chemicals that have significant corrosive, reactive, skin contact, carcinogenic or reproductive hazards with the potential of spla	ash or spill?
Full-face or half-face respirators	
Are you working with potentially airborne pathogens, hazardous gases, or volatile/aerosolized chemicals that may pose a serious toxicity or other inhalation hazard?	

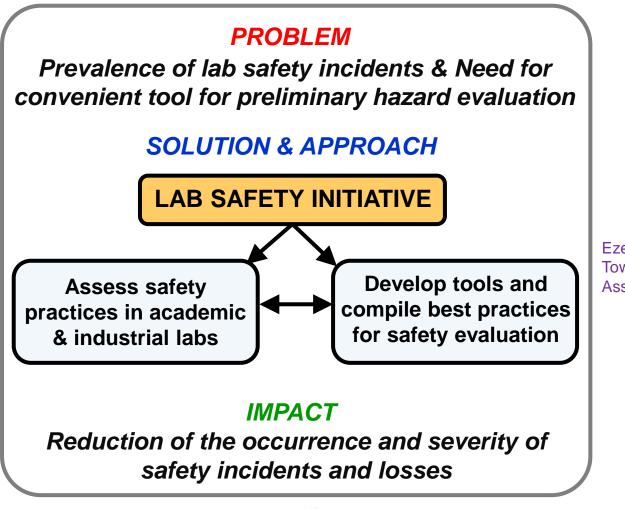
PPE suggestion from questionnaire reinforces and supplements SDS PPE recommendations


Final takeaways

- RHEACT aims to be a convenient web tool that can:
 - Collect critical information about planned experiment
 - Conduct preliminary operational hazard analysis
 - Summarize potential safety issues and best practices
- Target users:
 - Academic chemical research and teaching labs
 - Small and mid-size enterprises' (SME) R&D labs

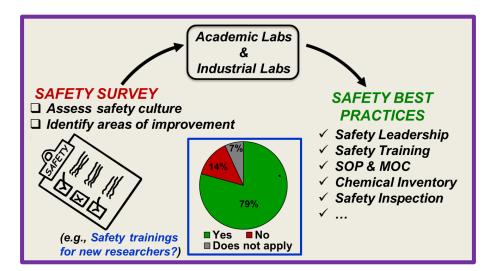
We aim for RHEACT to be a quick preliminary screening tool that alerts users about hazards and pushes them to perform further analysis.

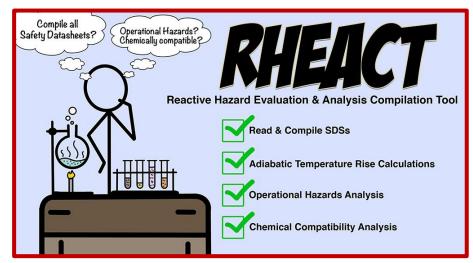
Output


- Final system temperature (ΔT_{ad})
- Operational hazard matrix
- Chemical compatibility matrix
- PPE recommendation
- Downloadable Safety report

Future outlook on RHEACT

- Make Beta version available for external testing in summer 2022
- Incorporating additional features
 - Protection Action Criteria (PAC) Rating for Chemicals
 - Safety Trigger Grid for Management of Change (MOC)
- Addition of safety resource links
 - Standard Operating Procedure (SOP) development guide
 - PPE selection guides for specific hazards
 - Safety training videos
 - Summaries and reports from popular safety case studies
 - Links to other tools/databases for further hazard analysis


CISTAR/P2SAC initiative aims to improve lab safety practices



Ezenwa, S.;[#] Talpade, A. D.;[#] Ghanekar, P.; Joshi, R.; Devaraj, J.; Ribeiro, F. H.; Mentzer, R. Toward Improved Safety Cultures in Academic and Industrial Chemical Laboratories: An Assessment and Recommendation of Best Practices, *ACS Chem. Health Saf.* **2022**, *29*, 202

Talpade, A. D.;[#] Ghanekar, P.;[#] Ezenwa, S.; Joshi, R.; Kravitz, S.; Tunga, A.; Devaraj, J.; Ribeiro, F. H.; Mentzer, R. Promoting a Safe Laboratory Environment Using the Reactive Hazard Evaluation and Analysis Compilation Tool. *ACS Chem. Health Saf.* **2021**, *28*, 134 ³⁵

Acknowledgements

Prof. Ray Mentzer, *Purdue ChE, P2SAC*Prof. Fabio H. Ribeiro, *Purdue ChE, CISTAR*Dr. Jay Devaraj, *Corteva*

Present & Past student team members:

Sopuru Ezenwa (ChE)

Dr. Jeremy Arvay (ChE)

Vikrant Gajria (CS)

Dr. Abhijit D. Talpade (ChE)

Dr. Pushkar Ghanekar (ChE)

Dr. Ravi Joshi (ChE)

Samuel Kravitz (CS)

Anirudh Tunga (IE)

Purdue Process Safety & Assurance Center

Center for Innovative and Strategic Transformation of Alkane Resources

CISTAR Universities: *Purdue, Notre Dame, Northwestern, New Mexico, UT Austin* CISTAR Industry Partners: <u>https://cistar.us/industry-innovation</u> P2SAC Industry Partners: <u>https://engineering.purdue.edu/P2SAC/people/partners</u>

Contact: sezenwa@purdue.edu,

This presentation is based upon work supported **primarily OR in part** by the National Science Foundation under Cooperative Agreement No. EEC-1647722. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. ³⁶