Continuum-scale simulation tools for transport phenomena in dense suspensions

Pranay P. Nagrani

Pls:

Dr. Ivan C. Christov and Dr. Amy M. Marconnet in collaboration with Dr. Federico Municchi (Colorado School of Mines)

School of Mechanical Engineering
Purdue University
West Lafayette, Indiana

Introduction: Suspensions

Definition

- A **suspension** is a dispersion of solid particles ($d_p > 1 \mu m$) in a fluid medium (typically Newtonian).
- A **dense** (or 'concentrated') suspension involves a bulk particle volume fraction $\phi > 30\%$.

Particle Migration

Stress inhomogeneity causes a particles migration flux centerline.

(Gadala-Maria, Leighton, Acrivos, Phillips et al, ca. 1987-95)

- This shear-induced migration occurs from high shear rate to low shear rate regions.
- Most prominent in **highly viscous** ($Re_{\dot{\gamma}} = \rho_f d_p^2 \dot{\gamma} / \mu_f \ll 1$) and **non-Brownian** ($Pe_{\dot{\gamma}} = d_p^2 \dot{\gamma} / D_T \gg 1$) flows.

(Here, $D_T = 6\pi d_p \mu_f / k_B T$ from Stokes-Einstein)

(figure from Fataei et al., Materials 2020)

Applications of dense suspensions

Proppants in hydraulic fracturing

flow of proppant in fracking fluid

(Figure from: https://www.texastribune.org/2011/07/28/epaissues-new-standards-hydraulic-fracturing/)

Electronics cooling

(Nagrani, Christov, and Marconnet, IEEE-ITherm:, 2021)

Migration of red blood cells

(Iss et al., Soft matter, 2019)

Inertia and shear-induced migration case RBCs to accumulate near centerline.

Flow of suspension in microchannels mitigate junction level temperature rise.

Two-fluid model (TFM)

Two different set of equations for particles and fluid each modeled as a continuum:

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\boldsymbol{u}_{p}\phi) = 0$$

$$\frac{\partial}{\partial t} (1 - \phi) + \nabla \cdot [\boldsymbol{u}_{f}(1 - \phi)] = 0$$

$$\frac{\partial}{\partial t} [\rho_{f}(1 - \phi)\boldsymbol{u}_{f}] + \nabla \cdot [\rho_{f}(1 - \phi)\boldsymbol{u}_{f}\boldsymbol{u}_{f}] = \nabla \cdot \boldsymbol{\Sigma}_{f} - \boldsymbol{f}_{d} + (1 - \phi)\rho_{f}\boldsymbol{g}$$

$$\frac{\partial}{\partial t} (\rho_{p}\phi\boldsymbol{u}_{p}) + \nabla \cdot (\rho_{p}\phi\boldsymbol{u}_{p}\boldsymbol{u}_{p}) = \nabla \cdot \boldsymbol{\Sigma}_{p} + \phi\rho_{p}\boldsymbol{g} + \boldsymbol{f}_{d}$$

- Particle and fluid rheology are separated in the respective stress tensors Σ_p and Σ_f .
 - TFM can reproduce results of the suspension balance model in general curvilinear flows without models to account for rotation – easier to incorporate 'flow-aligned' tensor models.
- Momentum equations are coupled by an interphase drag force f_d (closed using Clift drag).

```
\rho = \text{density}
```

$$\phi$$
 = particle volume fraction

$$t = time$$

$$\Sigma = \text{stress tensor}$$

$$u = \text{velocity}$$

tensor p: particle f: fluid

$$f_d$$
 = interphase drag force g = acceleration due to gravity

Implemented the OpenFOAM® – A Finite Volume Library Github code: https://github.com/fmuni/twoFluidsNBSuspensionFoam

Validation in Couette cell:

Municchi, Nagrani & Christov, Int. J. Multiphase Flow, 2019

Two-fluid modeling: thermal transport

Energy balances in particles and fluid phases:

unsteady convection pressure work conduction inter-phase heat transfer
$$\frac{\partial}{\partial t} \left(\rho_p \phi H_p \right) + \nabla \cdot \left(\rho_p \phi H_p \boldsymbol{u}_p \right) = \phi \frac{\partial p}{\partial t} + \nabla \cdot \left(\rho_p \alpha_p \phi \nabla e_p \right) - K_h (T_p - T_f)$$

$$\frac{\partial}{\partial t} \left(\rho_f (1 - \phi) H_f \right) + \nabla \cdot \left(\rho_f (1 - \phi) H_f \mathbf{u}_f \right) = (1 - \phi) \frac{\partial p}{\partial t} + \nabla \cdot \left(\rho_f \alpha_f (1 - \phi) \nabla e_f \right) + K_h (T_p - T_f)$$

Capturing enhancement of interphase heat transfer:

$$K_h = K_{h_o} \left(1 + \beta \phi \left(\frac{||\dot{S}_p|| d_p^2}{\alpha_p} \right)^m \right)$$
 proposed closure relation

interphase heat transfer coefficient (unknown)

At zero shear:

$$K_{h_0} = \frac{Nu_{d_p}k_f}{d_p^2}$$

 $Nu_{d_p} = 2 + 0.6Pr^{0.3}Re^{0.5}$

(Ranz & Marshall, Chem. Eng. Prog., 1952)

 \dot{S}_p = deviatoric rate of particle strain

 d_p = particle diameter α = thermal diffusivity

 β , m = fitting parameters

 $\rho = density$ ϕ = particle concentration

H = enthalpy

e = internal Energy

u = velocity

T = temperaturep = pressure

Subscripts:

p: particle *f* : fluid

The shear-induced particle stress

- · Normal stress differences arise from the stress anisotropy
- Total particle phase stress

$$\mathbf{\Sigma}_p = 2\mu_p \dot{\mathbf{S}}_p + \mathbf{\Sigma}_s$$

where

$$\dot{\boldsymbol{S}}_{p} = \frac{1}{2} \left[\nabla \boldsymbol{u}_{p} + \left(\nabla \boldsymbol{u}_{p} \right)^{T} \right] - (\nabla \cdot \boldsymbol{u}_{p}) \boldsymbol{I}$$

Shear-induced extra stress

$$\Sigma_{S} = \Sigma_{S}(\phi, \dot{\gamma}) = -\mu_{f} \eta_{N}(\phi) \dot{\gamma}_{eff} Q(\phi)$$

where

$$\dot{\gamma}_{\rm eff} = \sqrt{2\dot{\boldsymbol{S}}_p : \dot{\boldsymbol{S}}_p}$$

$$\mu = Dynamic Viscosity$$

$$\dot{S}$$
 = Deviatoric rate of strain

$$\eta_N(\phi) = \text{Normal Scaled Viscosity}$$

$$\dot{\gamma}_{\mathrm{eff}} = \text{Effective particle shear rate}$$

$$\dot{\gamma}_{NL}$$
 = Nonlocal shear rate

$$Q$$
 = Anisotropy stress tensor

(Morris & Boulay, *J. Rheol.*, 1999; Zarraga *et al.*, *J. Rheol.*, 2000; Dbouk *et al.*, *J. Non-Newtonian Fluid Mech.*, 2003)

A novel thermo-rheological migration force

- To rationalize thermal-shear effect, consider forces acting on particle phase:
- Compute force on particle phase as $f_{\Sigma} = \nabla \cdot \mathbf{\Sigma}_{p}$
- So, $\boldsymbol{f}_{\Sigma} = \nabla \cdot (2\mu_{p}\dot{\boldsymbol{S}}_{p} \mu_{f}\eta_{N}(\phi)\dot{\gamma}_{eff}\boldsymbol{Q})$
- For 1D flow this looks like

$$f_{\Sigma} = A(\phi)\mu_f \left(\frac{d\dot{\gamma}}{dx}\right) - A(\phi)\dot{\gamma}_{\rm eff} \left|\frac{\mathrm{d}\mu_f}{dT_f}\right| \left(\frac{dT_f}{dx}\right) + \mu_f \dot{\gamma}_{\rm eff} \left(\frac{dA(\phi)}{d\phi}\right) \left(\frac{d\phi}{dx}\right)$$
 shear-induced particle migration flux new thermo-rheological flux effect of particle concentration ~ negligible

flux due to shear gradient opposes thermo-rheological flux!

Let $A(\phi) = -\sqrt{2}\eta - \eta_N$

(Nagrani, Municchi, Marconnet & Christov, Int. J. Heat Mass Transf., 2022)

Model calibration

(Municchi, Nagrani & Christov, *Int. J. Multiphase Flow*, 2019)

$$\Rightarrow K_h = K_{h_o} \left(1 + \beta \phi \left(\frac{||\dot{S_p}|| d_p^2}{\alpha_p} \right)^m \right)$$

$$\beta = 0.2$$

$$m = 1$$

Boundary conditions		on inner wall	on outer wall	
$t < 5 \mathrm{s}$	Velocity	u = 0	u = 0	
	Temperature	T=298K	$\nabla T \cdot \widehat{\boldsymbol{n}} = 0$	
t > 5 s	Velocity	$\boldsymbol{u} = \omega R_{\rm in} \widehat{\boldsymbol{\theta}}$	u = 0	
	Temperature	$\nabla T \cdot \widehat{\boldsymbol{n}} = 0$	$\nabla T \cdot \widehat{\boldsymbol{n}} = 0$	

initial temperature = 293 K

Temperature decay curve:

Thermal vs. shear gradients in the Couette cell

Computational domain and setup

Thermal BCs	$T_{ m in}$	$T_{ m out}$
Case 1: Migration with thermal gradient	323 K	293 K
Case 2: Migration against thermal gradient	293 K	323 K

<u>Aim</u>: vary the direction of thermo-rheological flux.

- Axisymmetric 1D simulation
- Orthogonal structured mesh
- Transient formulation 2000 seconds

3M Fluroinert Electronic Liquid FC43 Datasheet (Sept. 2019)

Properties	Thermal conductivity $\left(\frac{W}{m\ K}\right)$	Density $\left(\frac{\mathrm{kg}}{\mathrm{m}^3}\right)$	Specific heat $\left(\frac{J}{\ker K}\right)$	Viscosity (Pa·s)
Particles	35.5	1900	960	-
Fluid	0.05601 0.0656	1570.4 1900	1045.08 1257.97	0.0012 - 0.0047

Suspension of Boron Nitride (BN) particles & Fluorinert (FC-43) fluid

Thermal boundary conditions control particle migration

riangle Starting from homogenous initial particle distribution at t = 0.

- $ightharpoonup \Delta T > 0$: Flux due shear gradients opposed by flux due to thermal gradients.
- $ightharpoonup \Delta T < 0$: Flux due to shear gradients aided by flux due to thermal gradients.
 - As |ΔT| increases, the thermo-rheological flux enhances migration.

(Nagrani, Municchi, Marconnet & Christov, Int. J. Heat Mass Transf., 2022)

Strongly sheared suspensions are more homogeneous

 Pe_{th} controls the interplay between thermal and shear particle migration

- For both thermal BCs, particle migration suppressed for larger $Pe_{\rm th} = \frac{\dot{\gamma} d_p^2}{\alpha_p}$.
- $ightharpoonup \Delta T > 0$: opposing thermal and shear fluxes \Rightarrow more homogenous particle distribution.
- $\succ \Delta T < 0$: augmenting thermal and shear fluxes \Rightarrow significant particle migration.

Electronics cooling via dense suspensions

Secondary flows: eddies

Boundary conditions and simulation setup

- Suspension comprised of 50 μm Boron Nitride particles at 30% concentration in an FC-43 fluid.
- ➤ Time to steady state ≈ 300 seconds.

(c) Herringbone channel.

Hot-spot cooled with FC-43 fluid

Consider cooling a 2 W/cm² hot spot using a dielectric fluid (FC-43):

Straight channel

Poor thermal spreading leads to high temperature rise

Changing the channel geometry can modify performance:

Dense suspensions can reduce junction temperatures by enhancing spreading

Dielectric Fluid ___ (FC-Fluid)

High Thermal Conductivity Particles (Boron-Nitride)

Hot-spot cooled with suspension

Consider cooling a 2 W/cm^2 hot spot using suspensions:

straight channel

High conductivity suspensions enhance thermal spreading, improving performance

Changing the channel geometry can modify performance:

Dense suspensions reduce junction temperatures by 100 K

(Nagrani, Christov, and Marconnet, IEEE-ITherm:, 2021)

Hot-spot cooling: FC-43 vs. suspension

Hot-spot cooling: local HTC

Axial variation of the heat transfer coefficient (HTC)

- ➤ Trend for pure FC-43 fluid follows analytical expressions from textbooks.
- HTC for suspensions is higher.
- Sharp rise in the case of herringbone channel due to secondary flow in notch.

Particle concentration distribution $\phi(x, t)$ in a herringbone channel

(Nagrani, Christov, and Marconnet, IEEE-ITherm:, 2021)

Constant heat flux of 5W: FC-43 vs. suspension

Constant heat flux:

Local heat transfer coefficient & pumping power

Axial variaton of heat transfer coefficient

- Higher heat transfer coefficient in suspensions owing to better properties.
- ➤ Highest thermal transport rate in herringbone channel.

Pumping power

- High pumping power for suspension:
 - highest pumping power in converging-diverging channel.

Pumping Power (μW)			
FC-43 Fluid		Suspension	
Uniform	HS	Uniform	HS
9.1	9.2	19.8	21.3
11.6	12.5	27.1	26.7
5.7	5.8	8.5	8.6
	FC-43 F Uniform 9.1 11.6	FC-43 Fluid Uniform HS 9.1 9.2 11.6 12.5	Uniform HS Uniform 9.1 9.2 19.8 11.6 12.5 27.1

Conclusion

Particle migration can be enhanced or suppressed depending upon the direction of heat transfer.

(Nagrani, Municchi, Marconnet & Christov, Int. J. Heat Mass Transf., 2022)

Suspensions reduce junction-level temp. for hot-spot heating due to enhanced thermal spreading via particle migration.

(Nagrani, Christov, and Marconnet, IEEE-ITherm:, 2021)

Thank you for your attention!

Questions?

Further reading:

- P.P. Nagrani, F. Municchi, A.M. Marconnet, I.C. Christov, "Two fluid modeling of heat transfer in flows of dense suspensions," *Int. J. Heat Mass Transf.*, 2022, **arXiv: 2105.08853**.
- F. Municchi, P.P. Nagrani, I.C. Christov, "A two-fluid model for numerical simulation of shear-dominated suspension flows," *Int. J. Multiphase Flow,* 2019, **arXiv:1811.06972**.

