A quick overview: AAE 590 Applied Control in Astronautics

Prof. Kenshiro Oguri

koguri@purdue.edu

What's this course about?

Applied Control in **Astronautics**

Astronautics

- "the science and practice of space flight and human activity in space" by Oxford dictionary (online ver)
- In this class: consider topics relevant to the motion of vehicles for space travel, exploration, and science (rockets, satellites, spacecraft, ...)

Applied control

- Control theory: generic, no consideration of specific dynamical systems
- We will learn how we can apply techniques in control theory to dynamical systems in astronautics — attitude & orbit control of space vehicles

Control in Astronautics — Unique Challenges

Controls for ground vehicles/robots

Controls for space vehicles (rockets, satellites, spacecraft, ...)

- What are unique challenges in space?
 - non-stationary pos/vel in orbit
 - impossible to repair/refuel once launched in general
 - infrequent access to the current state info/measurements
 - dominated by highly nonlinear dynamics (orbital mechanics: inverse-square field)
 - ...

Applied Control in Astronautics — Learning Goals

- 1. Acquire fundamental knowledge about control techniques for dynamical systems in astronautics
- 2. Apply the learned theories to design appropriate controllers for a range of spaceflight problems
- 3. Develop original computation software using a programming language to numerically simulate the spacecraft motion under control
- 4. Assess the controller performance and resulting dynamical properties analytically and numerically
- 5. Present and communicate their technical approaches to problems, their analysis/numerical results, and their interpretation in written and presentation formats

Control Techniques & Space Applications

	Space applications
Optimal Control Calculus of variations, Pontryagin's optimality principle	Orbit transfer Attitude maneuver Rocket steering
Nonlinear Feedback Control Lyapunov stability theorem	Attitude stabilization Attitude tracking Orbit maintenance
Optimization-based Control Convex optimization, Model predictive control	Orbital guidance Constrained orbit / attitude control Planetary landing
Robust Control Sliding-mode control, H-infinity control, Chance-constrained control	Orbit/attitude tracking Control under uncertainty Autonomous orbit control

