‘CR3BP Stationkeeping and Orbit Transfers

Find station-keeping maneuvers that will keep the spacecraft in an unstable butterfly orbit around
Enceladus. The orbit would be periodic except for the inclusion of the J2 perturbation from Enceladus. Use
indirect method two point boundary value problem for a low-thrust trajectory as well as a differential
corrector to accomplish the-same with an impulsive maneuver.

The same
approach can
be used to
transfer
between
three-body
orbits by setting
different initial
and final states -
| as the boundary” \_/
— ' conditions.
Impulsive Maneuver Low-Thrust::Min-Energy Halo-Butterfly Transfer

A minimum fuel trajectory would be preferable but does not reliably converge.




Optimal Control for Variable Thrust
Bounds Due to Propulsion Constraints

Objective:
Optimize spacecraft maneuver dependent
on external thrust bounds and Engine

Affan
Nazeer

. Results
Utilizing a shooting method of indirect
control optimization, a solution was

Earth to Ceres Transfer, 5.4 Years
ngine(s) at 1.43 kW, 3148 s Isp

1E

—_ . N =) 0.4
Efficiency found for a Dawn-like mission to < 53
Ceres. Optimal controller determined a 20 %
. Approach engine count and corresponding § -0.4
Use Pontryagin’s Minimum Principle to engine power to input. Introducing é’
optimize controller for minimum time of flight. variable maximum thrust allows for low 2
Spacecraft utilizes Solar Electric Propulsion thrust Solar Electric Propulsion orbit
with three engines. Control maximum is transfer missions to be optimized.
constrained by power input, inversely Further introducing extra granularity in
proportional to the squared orbital radius. engine operation such as discrete
Utilize experimental data to find optimal engine count optimization allows for 0
engine count as a function of total power. slight gains in AV. Distance [AU] 5 -1
i Distance [AU]
Number of Engines Active Over Transfer 4 Engine Power Over Transfer 3250 Engine Isp Over Transfer
, : _
22 3200
2
3150 -
é’ g 1.8 -
2 2+ — § _g 3100 F
<) O 1.6
& e
3050
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12k 3000 -
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Lyapunov Control for Autonomous Asteroid SLAM

Spacecraft Trajectory around Bennu

Result:

Objective

= Develop Lyapunov Controller to Improve Observability
of Asteroid Optical Navigation Method.

Approach

= Multi-stage Lyapunov Controller that approaches
asteroid, transfers to terminator plane and to desired
final orbit. Uses penalty functions for maximum
distance and cone to keep spacecraft in regions where
the OpNav algorithm is effective and accurate.

Z (km)

Discussion -3

= Successful with low control input, near-critical 4.
damping, and avoiding penalty zones. Further
potential with improved tuning of gains and penalties, } /
trying extreme initial conditions, along with testing 2 N
: ; , 1 y
OpNav algorithm on the produced trajectories. >\

-2 / <
-
? PURDUE School of Aeronautics >\\ "////\/% -3 *

UNIVERSITY and Astronautics Y (km) -4 3\//// 4



Indirect Optimization of Solar Sailing trajectories

An AAE 590ACA Project by Kaushik Rajendran

—Transfer Trajectory

- --Asteroid Trajectory

Objective
» To optimize trajectories of solar
sailing craft implementing practical

o Sun
A Cislunar Escape
v Asteroid Arrival

i
mission considerations g
-0.5
Approach o
Pontryagin’s minimum principle based | ! i L OA T
X, [AU
optl{mzt?]tlon Ut;IIZIng solar Sa”mg prlmer 3D trajectory of asteroid transfer Asteroid transfer trajectory’ [[)ro;ected onto the x-y plane
o \(/)e;“ronrlz ezofrgr [ rn] | ni mum- tl me an d Minimum time optimal transfer
minimum-solar angle/maximum power At ey : At oy
generation objectives Y At A o 7 fenoi At
Results o 2 .
* Solar sailing trajectories optimizing for g
desired objective while considering — v
practical mission requirements such as T iy !
sail angle constraint and imperfect solar T Yay !
reﬂectivity 3D trajectory of asteroid transfer Asteroid transfer trajectory projected onto the x-y plane
K e y Ta ke awa y Minimum solar angle optimal transfer

Solar sailing primer vector is a robust framework allowing consideration of several mission constraints
and requirements, while also facilitating the incorporation of technical developments in low-thrust
trajectory optimization literature into the realm of solar sailing orbit transfer problems

[1] Oguri, K., Lantoine, G., and McMahon, J. W., “Solar Sailing Primer Vector Theory: Indirect Trajectory .
Optimization with Practical Mission Considerations,” Journal of Guidance, Control, and Dynamics, American PURDUE School of Aeronautics
Institute of Aeronautics and Astronautics (AIAA), 45, 1, Jan2022, pp. 153-161. i
https://doi.org/10.2514/1.g006210

UNIVERSITY and Astronautics




2 Optimal Control and Momentum Exchange Tethers
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Andrew Binder, Abdulrahman Abdrabou
AAE 59000 ACA Final Project

Objectives

Momentum exchange tethers present a new and numerous challenges in the astrodynamics field.
The use of these tethers can provide a promising solution for spacecraft propulsion and trajectory
optimization. By developing advanced control algorithms and optimization techniques to guide
payloads into catch opportunities with the tether, this research seeks to provide valuable insights and
guidelines for the design and implementation of future cislunar missions and space infrastructure.
Our objectives were classified into three main levels. These levels were defined in a way that makes it
easy to follow and understand and makes a smooth transition in complexity levels using content from
class. Our objectives list can be summarized below. These are goals we will work towards achieving:
1. Level 1 (COMPLETE): Acquire a variety of catch opportunities using a min. energy formulation

2. Level 2 (COMPLETE): Achieve a min. energy - min. fuel homotopy between transfer objectives
3. Level 3 (INCOMPLETE): Control of the tether’s rotation rate, reducing fuel costs of the payload

Visualization of Results (N = 9762, TOF € [0.65,1.12] [nd])

Methodologies Used

Minimum Energy ‘ ‘ Min. Energy - Min. Fuel Homotopy

The tether sits in an L; Halo orbit. We can
decompose the motion of the tip of the tether
as the motion of the tether’s center of mass in
it’s orbit, plus the rotation of the tether.

_[cos[@(r — ro)]]

A blended control Lagrangian permits a smooth

homotopy between min. energy and min. fuel:
L==plull + Bllull,

The tether tip’s motion, as well as payload’s

state and costate evolve like min. energy.

Payload optimal control is more complex here:

w = argmin (1= B)lull3 + llull, +47Bu )

hiip = Thaio + L[ sin[@(t — 79)]
0

Payload state/costate dynamics under control utll2% tmax
evolve typically from a fixed initial condition: M rask PPN

. u* =T*u’, u=p

x=fo+Bu

T Umax Qumax(1 = p) < Ipllz = B)
__ 9[fo] 0[f0]= 0353 I3y e JLlpll -8 O lol— < 2 2 )
ox 3 ox Upp Q 2 1-8 = 1ipll2 = alUmax
. ] 0 Ipllz = B < 0)
Payload optimal control follows primer vector: X . X R R
1 1 Piecewise functions are written with the

ut = _EBTA = Ep Heaviside step, which has an approximation:

Our goal is precise rendezvous with tether tip: 1 x
%o HE) ~ _[— " 1]
= [x(zf) = heip(zp)], Z= [rf] 2|\VxZte2
Elements of 0y /0Z can be integrated alongside Where € < 1is a sharpness parameter. § = 0

the state/costate evolution, avoiding finite diff.: is the minimum energy trajectory, § = 1 is the
03,63 I3,3 03,3 03,3 minimum fuel trajectory, and by sweeping
oF ] [03x3 -1/2 13x3] between the two values § € (0, 1) and solving
X qug M 03,3 _Upp] the TPB.VP at each 8 (while feeding previous
B ) results into future convergence steps) smoothly
deforms minimum energy into minimum fuel.

Typical Trajectories:

<10 Sample Control History - Min. Fuel rajectory Samples - Min. Fuel

109

055

000
055 —/l

y-distance from barycenter [n.d.]

0.00 - | .
1.64 008 L |
-2.18 010 - /
0.0 0.9 17 2.6 35 43 0.60 0.70 0.80 [;’/0 1.00 110
Time of Flight [days| x-distance from barycenter [n.d.]
Aggregate Results:
Fuel Cost vs. TOF (N — 9762) - Thruster Utlization Fraction (1), X = 762
T d .
1.60
oy
1.40 L 4
\\“ 11 . ‘ i
120 fl “ REREENY 1 H‘ ‘
(D - 0% - \m HH H u‘
s [ I T
w i U ! \
—: | “““ \“‘ | A 50, ‘
w‘ .“ I |~ s \
° \m I [ \w ‘
\ \H \ w A A w \
=060 “‘ ‘ H W HHH‘HHH M“ ‘\H‘ w “M ‘M“‘ “H s PRI H i 11
040t ‘ “ ‘ ‘ ‘ ‘ ‘ H‘HH‘ ‘H H‘“ H 1 1 w“ | ‘\‘ ‘
020 ‘H\’ ‘ \ H \ ‘ ‘ 259 |
| \ l \
‘” H H‘ ‘M ‘\ H ‘ ‘ ‘ ‘
000 29 33 36 39 42 46 49 29 33 36 39 42 46 4.9

Propagation TOF [days| Propagation Time [days|

Discussion and Conclusions

In conclusion, optimal control can be used to guide payloads into catch opportunities with the
rotating tip of a momentum exchange tether. For a 48-hour window, optimal trajectories are
solved for in a minimum energy formulation. These trajectories are all transitioned

into a minimum-fuel formulation using a homotopy process between objective

functions. Sometimes, finer steps in 8 are required to smoothly deform

Bibliography

samples. The minimum fuel’s resultant bang-bang control profile is shown to
provide a net-savings over the minimum energy result in all cases, proving the
validity of the results. Future work could find a heuristic floor for thruster
strength on the payload could be derived within the min. fuel framework.
Finally, by increasing maximum thrust permitted, burns performed begin
approximating impulsive maneuvers. Using this technique, the minimum fuel
investment could be found via approximate impulsive maneuvers. Additionally,
control techniques beyond Pontryagin’s Minimum Principle could solve similar
or related problems.
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AAE 590 ACA Final Project — Converting VILM flybys using
Pontryagin-based multiple shooting optimization

Multiple Shooting Trajectory in Jupiter-fixed frame

» Goal: Given v; and ¥,, create a o/ '
. . . . ar /
continuous trajectory with terminal .oV 4!

velocities matching ¥; and v, b

= Approach: starting at periapsis, propagate \\ /
2 trajectories with the same initial state il
outwards using Pontryagin-based o s

minimum fuel trajectories, and enforce
boundary conditions using fsolve()

Multiple Shooting u *(t)

coina v
I

= Discussion: Less than ideal AV values, but |
approach demonstrated multiple }\
shooting’s robustness and decreased ‘
sensitivity to minor changes N
|
-
............ |
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P PURDUE Optimal Trajectory Generation for Multiple Space-Debris Cleanups I
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- n The combination of a Pontryagin transfer to
Space debris objects in low-Earth orbit (LEO) State Dynamics: % = fo(x) + Bay(x) + Bu  Vx = |Nr NV] [x y z xy z] Nu= H = = i approach the debris cloud and a convex
pose a significant threat to present and Y 1-5%)x a 2o Equation of 00 0 1 0 0 Felte] optimization transfer to approach the specific
future missions to space. One method of folx) = [ B= 0’*3], 04(%) = ap, +Qarag, ay - 20 l,sg;y B A Motion (EoM) SR B piece of debris was successful at navigating
addressing this issue is by using specialized ) Iy r _5;;)2 e iy " A=l 0 0 0 2 0 = oo the spacecraft to the desired location, as
spacecraft to fie—orbit space debris, cleaning " f=—ntu, X =Ax+Bu 0 10530) “228 0} 0 g ‘; ? shown by Figures 1 and 2, while minimizing
up Eath's orblF In advancement of this Control Hamiltonian: H = L+ AT f = |[ul|; + AT (f,(x) + Bau() + Bu) — - ) A NS B fuel usage. To this end, Figure 3 shows that
potential solution, this project seeks to Costate Dynamics: 372 _OH _ a7 (M & BBad(a:)) winy Sy llull2dt Convexified Optimal Control Problem w/ Time Discretization: the controt limitation was effective at
develop an optimal trajectory generation Oz Ox Oz such thats £ = fo(x) + Bad (x) + Bu . y Oblective Functi minimizing the controller's exertion, as the
method that will: IR [%(m) BB(ﬂJ,a+ umg)rx Foxptoty =given, Il <tnes | minimize J = [ llullde Jective Function magnitude of the control vector never
* Target space debris in LEO z T . _ i i exceeds 0.1. Meanwhile, the significantl
« Avoid other objects in close proximity to Optimal Control: minH = a%argmin [llulla + AT (£o(x) + Bu)] = argmin]||ul|; — 57 u] subjectto Zees = Ak + Byt + 0 Pynamic Function smaller scale of the convex optgimizatiuny
target debris R ) e (22l < e = 0.1 Control Constraint transfer meant that the control output was
* Maneuver to optimal position to =R (I, @) = argminl'(1 = 7" 4) [lxl| < —25 atan yn®? + 02| _ —30° State never close to approaching this limit, as seen
provide de-orbiting impulse to debris kl| = Xmax = - 7, (t) = ¥max . inFi 4. While the Level 1 objecti d
object Transversality Condition: ¥ = 0 — all boundary conditions are fixed. Path Constraints inFigure 4. rethe ‘eve‘ objectives an
. . X = [1'5115] x; = [0,0.08,0,0,0,0] Boundary Constraints most of the Level 2 objectives were
* Accomplish task w/ minimum fuel usage ’ accomplished, there are still further steps
*  Provide flexibility and extended lifespan Results: Convex Optimization that were not accomplished due to time
Optimal Control History constraints. For one, there was not enough
Pontryagin Transfer Trajectory o Lin‘;er;z impiet:‘nent Lhef(tis-orbiting impulse
: : S 52 on at the end of the convex
Objectives divided into levels based on —— Start Orbit: Relative Orbits after Convex Optimization Transfer ‘ :M s oztimization transfer, although its final
difficulty of task and importance of — Ziiii?‘o?;li" ) — S position is optimal for such an action.
completion for project's success o Transfer Trajectory s/c relative orbit s nm Additionally, none of the Level 3 objectives
Level 1: : Dchlris ls_mtiotntat t| o : ;/Cl lscatignhf{t tlj . B - . = T - . could be properly addressed.
ini s/c location af elative S o L lime [hours|
S Ry R o =———— ST
to approach debris cloud 2000 “:m Overall, the use of a minimum
o  Factorin LEO perturbations = o ” U e ” ' fuel Pontryagin TPBVP was effective at
. Aerodynamic drag g ° £ accounting for non-linear EOMs and the
. )2 perturbation S w0 “: | ] dynamics of a system complicated by the
Level 2: : - U Do) = *  LEO environment, allowing for the spacecraft
o Apply convex optimization via CWH -4000 Fig. 3: Pontryagin Transfer Control Time History to successfully arrive within close proximity of
to reach debris location Optimal Control History the debris object. Meanwhile, the use of
o Impartimpulse on debris for de- o convex optimization utilizing CWH equations
orbiting process \/ \j with time discretization was found to be
Level 3: 5000 2 CH U = effective at determining a global solution to
o  Re-orient spacecraft after each de- transfering to the target location while also
orbiting impulse j adhering to several key constraints.
o Enhance adaptability and efficiency 8000 & R . ' More work is needed to improve the product's
of impulses oo 00 . performance, but current simulations show
o Test control robustness using x [km] 5000 v 2 \/ ] promise ofg splution to the threat posed by
Monte-Carlo simulations 6000 ¥ [km] 7o . -05 % CH 9 ' space debris in low-Earth orbit.
- 7, [km] A ,J Acknowledgements
. ) i e team would like to than
Fig. 1: Pontryagin Transfer Trajectory : Y tmelui b " Professor Kenshiro Oguri, Aaron Liao, and
Fig. 2: Convex Optimization Transfer Trajectory Fig. 4: Conv. Opt. Transfer Control Time History Nicholas Craig for all of the assistance and

guidance that they provided in navigating this
proiect.



~Ohjective

To find the optimal control profile for reshaping the formation
of satellites from one configuration to another.

~Approach

Case 1:
Minimize the total fuel cost

+ Constraints

1.Terminal Condition
x;(0) = xjo , x;(t7) = %z,
2.Maximum Thrust
||uj(t)||oo < Unax

— Requires Reference States, x

1

» Convexification of Collision Free Constraint (by approximation)

(B0 — %)) €7 (x00) = x:(K)) > Tagel 1€ () — Fi(k),

— Sequential Convex Program (SCP) — Solves for the control and offset

* Introduced Offset to the final position, y,
» Consider in-plane to in-plane reconfiguration

~

Case 2:
Balance the fuel usage for satellites

g
min( max fo [l ®], dt)

3. Discretized HCW equation

4. No Collisions (Non-Convex)
€[ = x:(O]|| = 7eare

2

UNIVERSITY

N = Eo Tsafe = 49 [m]
- ~ . tr=6000]s],
NN o N %  Upngy = 25 % 107%m/s?
05 600 s
400 N\ 0 a0 g \0 o
m] 20 0.5 . 200 : 05
\ 5 m] y [m] Nt i /

Masashi Nishiguchi
~Results

Case1: Only Safety (left), Safety and Offset (right) Distance between Sat. 1 and 2

P3-Safety
1 - Initial State 1
= Final State

P3-Offset
P3-Safety
P3-Safety-Offset
T safe

z[m]
O\
.\\ \\
z[m]

100 | - —

;\\ s . - [ AASSOO 4900 5000 5100 5200 5300 SAOO\ESOO 5600 5700
500 AN /// 100 500> AN //// 100 & _
- 0 - 0
y [m] 0 ‘«.100 x[ml y [m] 0 " 00 x[ml “o 1000 2000 3000 4000 5000 6000
Time [s]
Fuel Usage for each sats., total fuel cost (J, ) and offset
Case 1 Safety Offset |Safety-Offset Case 2 Safety Offset [Safety-Offset
[Ju,|| [10-4m/s] 0.62 12,79 12,99 Ju,]| [10-4m/s] 5.16 10.99 10.99
[|u, || [10-4m/s] 5.50 7.30 7.16 [lu, || [104m/s] 7.27 5.79 6.39
[Ju.|| [10-4m/s] 11.34 1.80 2.13 [Jua|| [10-4m/s] 12.08 0.21 2.85
[lu, || [10-4*m/s] 14.65 1.86 2.00 llug|l [10-4m/s]|  14.91 4.14 4.66
[lug || [10-4m/s] 18.31 5.52 5.66 [lug || [10-4m/s] 18.37 7.46 7.59
[lug || [10-*m/s] 2198 9.18 9.32 llug|| [104m/s]|  21.78 10.99 10.99
J, [10-3m/s] 7.24 3.85 3.93 J, [10-3m/s] 7.96 3.95 4.35
yr [m] 0 349.23 345.47 yr [m] 0 300.00 300.00

~ Discussions

* The proposed SCP algorithm solves the fuel optimization problem
for minimum total fuel cost and balancing out the fuel consumption
among all satellites.

» The fuel usage among satellites can be balanced out in the cost of
increasing the total fuel consumption.

* Introducing offset in the final position reduce the total fuel
consumption and can still meet the finall geometric constraint.




Sequential Convex Programming for Minimum Fuel Soft-Asteroid Landing

= Optimization problem defined,
convexified, discretized to yield:

= Optimal Result: 59.4506 kg fuel

N
Z(}k 1._\f
k=1

min
Ty U
s.t. ll!'k. 1 = -‘1ij* + [3;‘.’11‘* =+ C‘k
0< .T'min{ * < Ok < 7-111;1.\( “hx (1 - (Z/‘- — Zlbg ))
by < 2k
lla@ll2 < o
Sy + dlE <0 E
il + dt 2. < :
di@. <0
- 5T r
Ty — ['() Yo ”71»]
LT
TN, = |7
B g p 1
where @ = [F vl oz
U [ak’ o) 21y, — In(mo — aTimaxtr)

A = Pty ti) S = [Ir 0u)

d‘17|“ 0 —tan(ymax) 0 0 0 “|T

Lt

/ D(tyy,7)B(7)dr
L -
" dy— [0 0

"

. 1.0 0 0 0

C. 7/ D(tyyq,7)€E(7T)d7
Ly

e
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Landing Trajectory | Brady Beck

N %
N\
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. \
\
\
N\
N\
\
N\
\
\
\
\
\
4
3
2
2 15 1 1
0.5 0
0 ry [km]
r, [km] !

= Sequential Convex Programming
Algorithm Implemented for Solution:

Give initial guess, Z(1) (constant gravity
optimal trajectory)

Convexify with current trajectory, Z(i)
Solve optimization problem to find Z(i)*
Use Z(i)* as the reference for Z(i+1)

Repeat steps 2-4 until mean-squared
error <= 1.5e-4

Acceleration [km/s2]

25 -
T
2
15
1
0.5
0
0 50 100 150 200 250 300
time [s]
s 103 Control Time History | Brady Beck
1
0.5
0 —
0.5
1
A 2
u3
4
1.5
0 50 100 150 200 250 300
time [s]

* |[mplemented scenario based on OSIRIS-REx Bennu landing

Thrust Magnitude Time History | Brady Beck




e Used sequential convex

| | [ ] u n
Optimal Orbit Transfer Using Sequential PURDUE | somoeces
UNIVERSITY and Astronautics
Convex Programming
Objectives B e i Discussion
1 /’/ o= AN \\\ Iteration 3
ini { i N\ A Iteration 4 L. .
e Generate minimum-fuel 2ol N W reation 5 e Similar trajectory to
low-thrust orbit transfer s I AL those generated via
o /1) eration 7 . . . . o
e Compare performance of Sash \ S W teration 8 |nd|rec_;t optimization
fixed and adaptive mesh . N ltemtind S s Adapt||ve mffTSh
SCP algorithms VI _Eastn Osbit Time control profile more
b i == — — - Mars Orbit Fixed Mesh Time Partition closely resembles
s 1 o5 o0 05 1 15 Adaptive Mesh Time Partition bang_bang ContrOI,
Approach X Coorfinae indicating improved
Fixed Mesh Control Adaptive Mesh Control optimality
Further

improvements to

programming with trust — — — — approach needed to
region and Augmented o o1t o o obtain more optimal
Lagrangian to improve g :2 solution
convergence P o 5, :

e Used fi?(ed mesh (uniform Eo % mgtrzofo;ppﬁgiable °
discrete time partitions), and § § multi-phase
adaptive mesh (varying, transfers
optimized discrete time W ‘ ‘ _‘ { incorporating path

partitions)

3
Time

constraints




Uncooperative Maneuvering Target Tracking during Optimal
Transfers between Cislunar Periodic Orbits
John L. Iannamorelli and Aneesh V. Khilnani

Increasing presence in Cislunar space requires development
of optimal trajectories between periodic orbits.

Mission requirements require stable continuation methods
for time-of-flight (ToF) and fuel consumption.

The Interacting Multiple Model (IMM) estimation
algorithm provides insight on a thrusting/maneuvering
phases of a target, without knowledge of the onboard
control via a probabilistic approach.

Position
Error [km)]

e
o3

=]
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Time [day]
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0.1

0.05
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-0.1

-0.15
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Dynamical systems theory-informed initial trajectory generation for

optimal initial costate guess.

Natural parameter continuation to reduce time-of-flight and step

from a minimum-energy to a minimum-fuel solution.
State estimation of the target’s state within 20 [km] and 4 [m/s] using
the IMM-UKF.

Thrusting mode is predicted without any knowledge of the
spacecraft’s onboard control system.



A Convex Optimization Approach for Fuel Optimal Spacecraft
Rendezvous under Stochastic Uncertainty - By Connor Plaks

Objectives:

1. Minimize the maximum control cost for rendezvous with worst case 2

uncertainty corrections with a 99% confidence.
2. Arrive at final state with a state dispersion covariance below a threshold
3. Fulfill probabilistic fuel magnitude and safe approach cone constraintsto a

99.9% confidence 3.

Monte Carlo Optimal Rendezvous Under Uncertainty

Monte Carlo Trajectories
— - — - 99.9% Position Bound
Nominal Trajectory
1k Desired Final Position Radius
Approach Cone

All MC trials
converge within
Desired Radius!

0.5 - - -
",.—- S
-~ 7

—
. %”

-0.5

y km]

-2.5

Approach
1.

Define a linear feedback control policy
to correct state estimation errors.
Solve the convex problem based on the
Kalman filter for optimal nominal
control and error feedback gain
matrices for each time step.

Assess control robustness with Monte
Carlo analysis.

Control Inputs [m/s?] Under Uncertainty vs. Time [s]

MC Control
= = 99.9% Control Bound
Nominal Control

. . . . | 1 )
50 100 150 200 250 300 350 400
Time [s]



Lyapunov-based 6 DoF control for rendezvous and docking

Objectives

* Control of 6 DoF relative states of chaser w.r.t. target in LEO.
* Avoid the unwinding problem in the attitude maneuver.

Approach
* Attitude error representation that is free from unwinding problem :
A I 5 pTy\V
R~ ~R')"  \where R: relative rotation matrix
2¢/1+u(R) :

* Dynamics of relative error states in target’s body frame:

r=Ax + Bu+c

B H{~(A+P)z — Kz +c}

i CA R Pl

Error state Lyapunov controller

Results and discussion

* Attitude error has been reduced almost monotonically despite of a
large initial error. > Effectiveness of ej

* Control magnitude remains nonzero even after error convergence.
—> Due to the non-zero docking distance & coupled dynamics.
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Continuous-Thrust Station-keeping in Earth-Moon
L2 Halo Orbit with Pulsar Navigation

Jillian Ross

Goal: Provide optimal station-keeping, balancing sy performance with ReSU I.tS:
C i S lu nar M | SS | ons control effort while meeting navigation requirement. —— . T
Why is station-keeping important for future cislunar missions? Define cost via Linear Q i l
* Orbits inherently dynamically unstable [ J(8x(®), u(®)) = %fm{AxT(t)Q(t)Ax(t) +ul (OROuD)} de ]
. rF"/lrg(\)/ilz:le means of observation and communication to Earth and/or the ° |

R(t) € R3*3
Positive definite

=
B
K
8
S

* Artemis Q(t) € R®¥6
* Lunar Gateway Positive semi-definite
Why is pulsar-based navigation appealing for cislunar station-keeping?

« Stable millisecond pulsar stars act as navigation beacons, generating
X-ray signals that can be used analogously to GPS signals [10]

* Options exist for GNSS and DNS, but best to have redundancy for
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State Dynamics Navigation Constraint:
Linearization Occultation Model:
) R ) o Outcomes:
@ o satedeiatonwith respect tonominatorit | fezxm | [rés + B3 [rs+ RS *  AnLQR controller balances system performance and
T —cos ! ~———<cos A Fgs <+ cosTH— . L .
) ) - T8 Tg,s low-thrust control for insertion into an L2 Halo orbit
e Define error dynamics: | Ax = A(xy, t)Ax + Bu(t) I
Treat binary nature of occultation with sigmoid and apply to control: . Treating the thruster to only fire when the line-of-sight
1 sar is available allows f igati
) P . 033 Inus S(z) = to a pulsar is available allows for a navigation
e Update state via State-Transition Matrix update pic = afGew, ) >Ax + Bu(t) 1 Yev )
( = o . c.onstralr.lt . .
S N *  Fine-tuning a smoothing parameter to treat the binary
CR3BP Fine-tune to achieve convergence! nature of the thrust allows for improved convergence
Dynamics under this constraint




Low-Thrust Trajectory Optimization to Comet

By: Andrew Harrison & Landon Abboud

Level 2 Analysis - Min Energy

Optimal Transfer to Comet Howell

04

03

02

0.1

X, [AU]

2~ SURDYE

Optimal Transfer
Level 2 Analysis - Min Energy

e X
e X
O xlar
Trajectory
Earth Orbit
e g | Howell Orbit
— — k\
o =~ :
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‘!
4 N 2
2 N "0
0N
X, [AU] -2 X, [AU]

School of Aeronautics
and Astronautics

Find minimum AV transfer
from Earth to comets
88P/Howell and 304P/Ory
using Pontryagin’s Minimum
Principle for minimum energy

Summary of Results

Level | Minimize | AV (*) | TOF (days)
1 Fuel 11.266 2915
1 Energy 3.700 2549
1 Energy 1.728 3280
2 Energy 1.492 3939
3 Energy 1.979 2979
3 Energy 0.680 3846

Level 3 Analysis - Min Energy

Costate Time History

Optimal Transfer to Comet Ory

Optimal Transfer
Level 3 Analysis - Min Energy

o X

o X

O Xy
Trajectory
Earth Orbit
Ory Orbit

X, [AU]



Sequential Convex Programming for Enceladus Landing

Objective: Soft landing on Enceladus using Sequential Convex

Programming (SCP) to aid in search for life

Approaches:
e Non-Constant Gravity
o  Sequential Convex Programming
o  Piecewise Affine 6
e Free Time of Flight (ToF)
o  Sequential Convex Programming
o  Golden Search

Results:
e  Minimum ToF for soft landing from SCP
° Monte Carlo simulation of ToF to minimize fuel
consumption

Discussion:
e  SCP guarantees convergence for any initial
reference trajectory and ToF guess
e  Monte Carlo shows linear relationship between
fuel consumption and ToF

Monte Carlo Trajectories

A Destination

—— Trajectories

y [km]

Monte Carlo

Drew Siciliano and Lucea Larest

SCP Free Final Time Enceladus Landing

56 (i) 0 y (m)

Sequential Convex Programming
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Indirect Optimization for Mars Aerocapture
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Convex Optimization of Dragonfly

Landing on Titan

Charlotte Bennett, Brandon Castillo

Goal: Design optimal entry trajectory for Dragonfly lander via convex optimization

100

100

100

| Titan: Target Moon Control History ol'Ol?timal Landing
. Level 2 Constraints, MPC
* Low Gravity 0 e
e Thick Atmosphere <7 rrffff F
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= Dragonfly Lander: - F“‘“ el
. )| ' =
* Quad-copter craft design =7 WFT F Il
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* Results: ,
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Model Predictive A model predictive controller is developed, simulated, and validated, to support retro-
Control for Propulsive propulsive landing of spacecraft in disturbed environments. This controller separates the

. guidance and the control of the spacecraft into two separate controllers, both develop
Landings . . . . R

optimal control strategies through numerically solving convex optimization problems.

Simulations validate successful achievement of soft landings

05 under various disturbances using the developed controller, but

045 - at high fuel costs and often through difficult to unrealistic

04 control actuations.
0.35 «_|
03 |
0.25
0.2 -

0.15 - w— Reference Trajectory |
05
0.05 ~_|
0 > =
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— — —Reference Control History
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OBJECTIVE

The project aims to establish a Model Predictive
Control (MPC) framework for a direct transfer from a
Halo orbit to any point on the Moon’s surface, using
the Circular Restricted Three Body Problem (CR3BP)
model. The primary objective is focused on
implementing a Convex MPC to simulate direct
transfers to the lunar surface from periodic Libration
Points Orbits (LPOs). The secondary goal of the
project is the integration of real-time data adaptability
to account for perturbations and test thereby the
controller's responsiveness to uncertainties.

APPROACH

The convex MPC uses a linearized version of the
CR3BP dynamics to perform a prediction its future
states over a finite-horizon and to solve an
optimization problem in discrete time. The cost
function used encompasses both state deviation over
the predicted state with respect to a reference
trajectory and the sum of the predicted control inputs.
The optimization problem is run until the spacecraft
reaches the desired target within 1e-4 of the norm of
the final desired state vector, or until max simulation
time is reached. A rotating hyperplane collision
constraint is implemented conditionally until some
threshold distance during the simulation to avoid over
constraining the problem initially.

. Reference
g:nr:rsglrar:gt? Trajectories
inpu
start/end state of P"t?rﬁgaé’rig ?,.2“"
prediction window differential
and collision corrections

MPC Formulation
N-1

15r;1’m12e —6xNQf6xN + ZO (6x Q6x; UKk )

subjectto x4 =
x(to) =
.. T
x(t5) = [xp, 35 %5, 350 25]
llzkill2 < Umax,

Ny (ros —rox) =0,

Axxy +Brup+cy, i=1,..., N,

[x0, Yo, %o, Y0, 201",

i=1,..., N, (convex).
Cost function

Predicted states
deviation and
control inputs

Dynamics Model
CR3BP

School of Aeronautics
and Astronautics

427 FORDUE

MPC FOR DIRECT TRANSFERS FROM LPO

Author: Moacir Fonseca Becker
== = MPC Trajectory
— — Referece Trajectory
RESULTS South Halo L1 o
@ Landing Location
10 Control Inputs Over Time
R Total AV: 5569.780 m/s
I
£ = R
* :" Prediction Horizon: 10 step
y Sampling Time: 1.00 min
b —_, Q, Qf: 1 (6x6)
—— Magnitude of Control Input R: 1(3x8)
° * ” Tlmg?mln ites) - A tual * 0
0012 . Position Erre rwllh De::n.oxf
——— Prediction Horizon: 10 steps
SN Sampling Time: 2.00 min
001 ~o Q, Qf: 1 (6x6)
\\ R: 1(3x3)
o ~ — gy etosy dver T
£ N, [z Error Magnitude
F T (mines) - Refronco
Time (minutes) - Actual
‘Spacecraft Height and Distance to Landing Point vs. Time X Coordinate Over Time
[T~ 770I"de P"
. o et U7 "
Tme ‘!::mms) Time (minutes) - Actual
The S/C shows coasting phases where
Total AV ToF .the. cgntrol input is zero. This is
indicative of a good following of the
reference trajectory. The AV values and
MFE =56 MG = G ToF, alpelt hlgher than the refergnpe,
s T are not infeasible. Also, the prediction
is adequately follows the actual
Ref = trajectory of the S/C. The distance to
4.1049 IReif= 115 the landing  point  decreases
km/s min monotonically  during the  entire
transfer.

DISCUSSION

The MPC, hereby formulated with a conditional activation of
the collision constraint, is shown to be capable of closely
following the bi-impulsive reference trajectory as long as the
penalty on the control matrix is not too high.

Given that, in general, MPC controllers are better at following
or staying nearby references rather than generating
trajectories, it becomes crucial to pay special attention to the
trajectory generation methodology in the CR3BP problem.
Pontryagin’s or similar methods can be explored for trajectory
design, which adds an additional layer of complexity. As long
as the reference trajectory designed has been optimized
according to the desired parameters, the MPC controller will
do a good job of following the reference trajectory even
under a highly non-linear environment, as can be seen in
these results. On the other hand, when a reference trajectory
is not available, the MPC might be able to find its own
reference trajectory, provided it is close enough to the
desired landing point.

The prediction horizon and the sampling time of the controller
are parameters that are crucial to pay attention to. When the
spacecraft is farther from the Moon, a higher sampling time
(e.g., lower time discretization resolution) might be
acceptable. As the spacecraft approach the near landing
stage, a finer time resolution becomes necessary to react to
the fast changing dynamics and low time. It’s important to
strike the right balance between the prediction horizon and
the sampling time. Adaptability on these parameters might
be worth exploring as well.

Other parameters that are important to pay
attention to are the control and state deviation
penalty weights for the convex optimization
problem. More research is required to find

the right heuristic when defining then.

Overall, the MPC here developed shows
promising results that require further analytical
work and iterations to be optimized.

North Halo L1

Sample of another trajectory



Dynamically-Informed Optimal Low-Thrust Transfers

Between Earth-Moon Libration Point Orbits

Drew Langford*, Juan-Pablo Almanza-Soto*
*Ph.D. Student, School of Aeronautics and Astronautics, Purdue University

Introduction

sk H-s00 o

Gravitational dynamics of Earth-Moon system are highly
non-linear and sensitive in the vicinity of Lagrange points.
Recent literature regarding cislunar trajectory design split
between distinct approaches: optimization and dynamical
systems theory. Despite recent advances, there remains a
knowledge gap regarding how mission designers can
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process. x [nd] time (nd]
Project Outline and Framework Methodology
Goal: construct fuel-optimal transfers between L1 and L2 Leverage numerical continuation in initial costates to
Lyapunov orbits of different energy levels enable construction of optimal transfers between orbits of
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Results

A continuum of energy-optimal trajectories between L, and L, Lagrange
points of increasingly different energies is computed via numerical
continuation.
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Analysis and Discussion

The initial costates associated with optimal transfers evolve smoothly
from zero as the energy difference of the Lyapunov orbits is increased.
The corresponding control history of each transfer illustrates that the
largest burns are performed near the Moon. It follows that the optimal
control leverages the gravitational well to reduce the value of the cost
index.

120- — AV,
[ - av,

Here, low-thrust optimal
control outperforms the best
case minimum impulsive
delta-v. Note that velocity
change is smooth across the
continuation, reflecting the
smooth deformation of the
costate history for each
transfer.

AV [m/s]

L | , L L |
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Launch Vehicle Propulsive Landings via Sequential Convex Programming

Objective

Fuel-optimal landing trajectory of
launch vehicle propulsive landing

Falcon booster landing as
motivating example

Considering free final time, grid fin
and thrust vectoring control, planar
motion and attitude dynamics

Methodology

J 7 PURDUE

Sequential convex programming

Discretize state and control over
timespan; compute optimal
trajectory satisfying dynamics and
state and control constraints

To address nonlinear dynamics,
repeatedly linearize dynamics about
reference trajectory

School of Aeronautics

UNIVERSITY and Astronautics

Aerodynamics model

= Grid fin and body aerodynamics
modelled with aerodynamic
coefficient matrices

= Convexifiable framework

= Models both lift and drag

Model of body aerodynamics (red vector, blue
locus) and grid fin aerodynamics (orange vector,
purplelocus)in inertial frame with 6° angle of
attackand -10° grid fin deflection. Relative wind
is directly upward.

Results

» 6.5t propellant consumed, of 16.3t

available

= Flight time: 30.94 sec

= Simulation convergence sensitive to

problem parameters

Right: scale view of computed optimal trajectory

3000 -
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2000 -

1500 -

Vertical position [m]

1000 -

500 -

Above: vehicle model with trajectory (blue background line),
thrust vector (red), body aerodynamics vector (large blue), 0 -
grid fin (green) and grid fin aerodynamics vector (small blue)
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= MPC for Spacecraft Rendezvous with Collision Avoidance
e By: Veronica Rankowicz

& ASTRONAUTICS

Objectives:

e Level 1: MPC model for spacecraft rendezvous optimal control problem
* Level 2: Collision avoidance of one stationary obstacle in 2D space
* Level 2: Collision avoidance of one moving obstacle in 2D space

Level 3: Collision avoidance of one moving obstacle in 3D space

Approach
N-1 N-1
min > Qi+ ) TEST + T uin
XUk
k=0 k=0
s.t Xpe1 = AXy + By <= Equations of motion

“l_il(t)” < Upax
Ry¥k < MiXy + Bk
f(ty) =T, V

G |\/laximum thrust
= (ollision avoidance

V(to) = Vo
. . 4= Boundary constraints
F(tg) = g

A single rotating hyperplane technique was used.

Discussion:

Using a single rotating hyperplane in 2D and 3D space worked effectively to
prevent the spacecraft from colliding into the obstacle on its path to the
target position as the hyperplane successfully guided the spacecraft around

the obstacle and to the target.

ra [km]

3D Moving Obstacle Results

MPC 3D Trajectory Using Linearized CWH Eqs Without Collision Avoidance

- Veronica Rankowicz Spacecraft Trajectory
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-
/// s Target
_— N ——— Obstacle Path
— _— § Obstacle Start
g o Obstacle End
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15 45 r1 [km]

No Collision Avoidance Applied

MPC 3D Trajectory Using Linearized CWH Eqs With Collision Avoidance
- Veronica Rankowicz

ft Trajectory

Obst
Obst
Obstacle End

-15 7y [km]

Collision Avoidance Applied



Objective and Methods

Increased interest in periodic three-body orbits
in cislunar space

Prevalence of low-thrust propulsion

Objectiveis to find low-thrust transfers between
these orbits with minimum fuel

Pontryagin’s maximum principle used with
continuation to find families of orbits

X =f(x)=fo(x)+Bu

X
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033
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(minimum energy)
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Results
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Continuation is highly successful in obtaining

w-thrust, minimum fuel transfers

* Longer times of flight decreases cost, but has

minishing gains with minimum energy, and

reaches a minimum with minimum fuel
* Bang-bang profile successfully attained for
minimum fuel solutions

umerical difficulty with continuation when

changing problem too much, so smaller steps
are advantageous

Discussion



Case 2: Controller output for final iteration over time
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Lyapunov and Halo Transfers in the Earth-Moon
L1 via Sequential Convex Programming

By Steven Allen Williams Jr. and Nathaniel Phillip Sailor
E PURDUE School of Aeronautics
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