
ECE264 Summer 2013
Exam 3, July 18, 2013

Name:

By signing this statement, I hereby certify that the work on this exam is my
own and that I have not copied the work of any other student while completing
it. I also declare that I will not discuss/share this exam with anybody today.
I understand that, if I fail to honor this agreement, I will receive a score of
ZERO for this exam and will be subject to possible disciplinary action.

Signature:

You must sign here. Otherwise you will receive a 2-point penalty.

This is an open-book, open-note exam. You may use any book, notes, or program printouts.
No personal electronic device is allowed. You may not borrow books from other students.

Two learning objectives (structure and dynamic structure) are tested in this exam. To pass
an objective, you must receive 50% or more points in the corresponding question. If you
have passed a learning objective, you will not “unpass” later.

1



Contents

1 Special Array (8 points, Structure) 3

2 Linked List (9 points, Dynamic Structure) 12
2.1 Program with Bug (6 points) . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Sparse Array (3 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Binary Search Tree (3 points, Dynamic Structure) 17
3.1 Insertion (1 point) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Program Result (2 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Learning Objective 3 (Structure) Pass Fail

Learning Objective 4 (Dynamic Structure) Pass Fail

Total

2



1 Special Array (8 points, Structure)

This question asks you to create an array with the following special properties:
1. Each element is an integer
2. All elements are initialized to zero.
3. Only positive integers can be inserted into the array.

If a negative integer or zero is inserted into the array, the array is not changed.
4. When a positive integer vnew is inserted, follow this procedure:

(a) Set k to zero.

(b) Repeat the following steps:

(c) If k is an invalid index of the array, stop, i.e., the insert function should not
continue.

(d) Set vcompare to the value at index k.

(e) Compare vnew with vcompare. If vcompare is zero, change vcompare to vnew.
Stop.

(f) If vnew = vcompare, do not change the array. Stop.

(g) If vnew < vcompare, set the new value of k to 1 + 2 × old value of k.

(h) If vnew > vcompare, set the new value of k to 2 + 2 × old value of k.

Consider the following command sequence.
1. Create a SpecialArray object with space for 20 elements.
2. Insert 7.
3. Insert 3.
4. Insert 12.
5. Insert 5.
6. Insert 1.
7. Insert 9.
8. Insert 8.
9. Insert 4.

10. Insert -3.
11. Insert 5.

Write down the values of the array (2 points).

index 0 1 2 3 4 5 6 7 8 9

value

index 10 11 12 13 14 15 16 17 18 19

value

3



Searching whether a value is stored in the array can be very efficient. You need to design
and implement an efficient solution without checking every element in the array.
In the following program, the array’s size is given by the input argument, not 20. You will
lose 2 points if you hard-code the array’s size to 20.

#include <stdio.h>1
#include <stdlib.h>2

3
typedef struct4
{5

int size;6
int *data;7

} SpecialArray;8
9

/*10
Create and return an object of SpecialArray.11

12
Allocate memory for the object and the data (0.25 point)13

14
The data attribute should be able to hold enough integers (0.2515
point)16

17
The data ’s size is given by the input argument (0.25 point)18

19
Initialize all elements to zero (0.25 point)20

*/21
22

SpecialArray *SpecialArray_create(int size)23
{24

25
26
27
28
29
30
31
32
33
34
35
36
37
38

4



39
40
41

}42
43

/*44
Insert an integer into the array. Follow the rules described45
earlier (2 points)46

47
If the array is changed , return 1. If the array is not changed ,48
return 0. (0.5 point)49

*/50
51

int SpecialArray_insert(SpecialArray *arr , int value)52
{53

/* set k to zero */54
55
56
57

/* check whether value is positive. do not insert a negative value58
or zero */59

60
61
62
63
64
65

/* check whether the index is still valid */66
67
68
69
70

/* If the element at index k is zero , set it to value */71
72
73
74
75
76

/* If the element at index k is the same as value , do nothing */77
78
79
80

5



81
82

/* change the value of k */83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

}98
99

/*100
Search whether a value is stored in the special array.101
If the value is zero or negative , return -1.102
If the value is in the array , return the index.103
If the value is not in the array , return -1.104

105
This function MUST NOT check the elements one by one in the106
array. More specially , this function must determine whether the107
value is in the array using *at most* log(size) comparisons , here108
size is the array ’s size.109

110
You will receive no point if the array ’s index increments by111
one each time.112

113
2 points114

*/115
116

int SpecialArray_contains(SpecialArray *arr , int value)117
{118

119
120
121
122

6



123
124
125
126
127
128
129
130
131
132
133

}134
135
136

/* release memory used by the special array 0.5 point */137
138

void SpecialArray_destroy(SpecialArray * arr)139
{140

141
142
143
144
145
146

}147

7



2 Linked List (9 points, Dynamic Structure)

This question asks you to implement a linked list with the following property: If an odd
integer is inserted, it is inserted at the beginning of the list. If an even integer is inserted, it
is inserted at the end of the list.

2.1 Program with Bug (6 points)

The following program intends to implement the List insert function. It contains one (or
several) bug. If there are multiple lines that can cause problems, point out the first problem
encountered when running the program.
Do not worry about any bug in the other functions.

1. What is the output of this program? (0.5 point) It is possible that the program prints
nothing before the problem occurs. In this case, your answer is “nothing”.
If the program has “Segmentation Fault”, points out which line causes the problem.

2. Explain the reason (1 point).
3. Draw the linked list (next and value) when the problem occurs. Do not draw the

call stack and heap. (2 points)
4. Is all memory allocated by calling malloc still reachable when the problem occurs?

Explain your answer. (2 points)
Your answer should be clear, precise, and short.
Do not fix this program. You will receive no point by fixing the program.

#include <stdio.h>1
#include <stdlib.h>2
typedef struct listnode3
{4

struct listnode * next;5
int value;6

} Node;7
8

Node * Node_construct(int v)9
{10

Node * n = malloc(sizeof(Node ));11
n -> value = v;12
n -> next = NULL;13
return n;14

}15
16

/*17
insert a value v to a linked list.18
head: the head of the original list.19
return the head of the new list.20

8



*/21
Node * List_insert(Node * head , int v)22
{23

Node * p = Node_construct(v);24
if (head == NULL)25

{26
return p;27

}28
if ((v % 2) == 1) /* odd number */29

{30
/* insert at the beginning */31
p -> next = head;32

}33
Node * q = head;34
/* insert at the end */35
while ((q -> next) != NULL)36

{37
q = q -> next;38

}39
q -> next = p;40
return head;41

}42
43

/* delete every node */44
void List_destroy(Node * head)45
{46

while (head != NULL)47
{48

Node * p = head -> next;49
free (head);50
head = p;51

}52
}53

54
void List_print(Node * head)55
{56

printf ("\ nPrint the whole list:\n");57
while (head != NULL)58

{59
printf ("%d ", head -> value);60
head = head -> next;61

}62

9



printf ("\n\n");63
}64

65
int main(int argc , char * argv [])66
{67

Node * head = NULL; /* must initialize it to NULL */68
head = List_insert(head , 917);69
head = List_insert(head , -504);70
head = List_insert(head , 263);71
head = List_insert(head , 326);72
head = List_insert(head , 138);73
head = List_insert(head , -64);74
List_print(head);75
List_destroy(head);76
return EXIT_SUCCESS;77

}78

2.2 Sparse Array (3 points)

The fourth programming assignment asks you to implement a sparse array using a binary
search tree. This problem asks you to debug the merge function for a sparse array using a
linked list. Give a scenario (properties of arr1 and arr2) when this program will cause
“Segmentation Fault” and briefly explain why this occurs. If there are multiple bugs, you
need to find only one.
Assume that both arr1 and arr2 are valid spare arrays. Each can be NULL, if the array has
no element.

#include <stdio.h>1
#include <stdlib.h>2

3
typedef struct snode {4

int index;5
int value;6
struct snode *next;7

} SparseNode;8
9

SparseNode *SparseArray_insert(SparseNode *arr ,10
int index , int value);11

SparseNode *SparseArray_removeZero(SparseNode *arr);12
13

SparseNode *SparseNode_create(int index , int value)14
{15

SparseNode * sp = malloc(sizeof(SparseNode ));16

10



sp -> index = index;17
sp -> value = value;18
sp -> next = NULL;19
return sp;20

}21
// create a new sparse array that has the nodes from arr1 and arr222
// copy the nodes from arr1 , create a new array called arr323
//24
// add the nodes from arr2 to arr3 , if two nodes have the same index ,25
// add the values together26
//27
// remove the nodes whose values are zero28
//29
// If arr1 is NULL , this function returns a copy of arr2.30
// If arr2 is NULL , this function returns a copy of arr1.31
// If both arr1 and arr2 are NULL , this function returns NULL.32

33
SparseNode *SparseArray_merge(SparseNode *arr1 , SparseNode *arr2)34
{35

SparseNode * arr3 = NULL;36
// copy arr1 to a new array called arr337
while (arr1 != NULL)38

{39
arr3 = SparseArray_insert(arr3 , arr1 -> index , arr1 -> value);40
arr1 = arr1 -> next;41

}42
// insert the nodes in arr2 into the end of arr343
while (arr2 != NULL)44

{45
SparseNode * arr4 = arr3;46
int found = 0;47
while (( found == 0) && ((arr4 -> next) != NULL))48

{49
if ((arr4 -> index) == (arr2 -> index ))50

{51
arr4 -> value += arr2 -> index;52
found = 1;53

}54
else55

{56
arr4 = arr4 -> next;57

}58

11



}59
if (found == 0)60

{61
// arr4 is the last node of arr362
// add a new node at the end63
arr4 -> next =64

SparseNode_create(arr2 -> index , arr3 -> value);65
}66

arr2 = arr2 -> next;67
}68

// remove the nodes whose values are zero. assume the removeZero69
// function has been correctly implemented70
arr3 = SparseArray_removeZero(arr3);71
return arr3;72

}73

12



3 Binary Search Tree (3 points, Dynamic Structure)

3.1 Insertion (1 point)

Draw the binary search tree after inserting
7, 3, 6, 2, 9, 8, 13, 1, 12, 10

3.2 Program Result (2 points)

Consider the following function for Tree delete. There is a (or several) mistake in the
following program.

#include "tree.h"1
#include <stdlib.h>2
/*3

Delete the node whose value is val.4
root: the root of the tree5
val: the value to search6

7
If val is not stored in the tree , this function does not delete8
anything.9

10
The function returns the root of the tree after deleteing the node.11

*/12
Tree * Tree_delete(Tree * root , int val)13
{14

if (root == NULL)15
{16

return NULL;17

13



}18
if (val < (root -> value ))19

{20
root -> left = Tree_delete(root -> left , val);21
return root;22

}23
if (val > (root -> value ))24

{25
root -> right = Tree_delete(root -> right , val);26
return root;27

}28
/* root ’s value is the the same as val , needs to delete root */29
if ((( root -> left) == NULL) && ((root -> right) == NULL))30

{31
/* root has no child */32
free (root);33
return NULL;34

}35
if ((root -> left) == NULL)36

{37
Tree * rc = root -> right;38
free (root);39
return rc;40

}41
if ((root -> right) == NULL)42

{43
Tree * lc = root -> left;44
free (root);45
return lc;46

}47
/* root have two children */48

49
/* There is a (or several) mistake in the following lines */50
/* ================================================ */51
/* BELOW THIS LINE */52

53
/* find the immediate successor */54
Tree * su = root -> right; /* su must not be NULL */55

56
while ((su -> left) != NULL)57

{58
su = su -> left;59

14



}60
/* su is root ’s immediate successor */61
/* swap their values */62
root -> value = su -> value;63
su -> value = val;64
/* delete the successor */65
root -> right = Tree_delete(root , val);66
/* ABOVE THIS LINE */67
/* ================================================ */68
return root;69

}70

Use the root of the binary search tree created from the previous question as the first argu-
ment. The second argument is 7.
Draw the binary tree returned by this function. (1 point)
Briefly explain why the tree is the way you draw. (1 point)
This question does not ask you to correct the mistake (because you can find the correction
from the course note). Do not explain how to correct the program. You will not receive any
point by correcting this program.

15


