
ECE264 Summer 2013
Exam 2, July 3, 2013

In signing this statement, I hereby certify that the work on this exam is my
own and that I have not copied the work of any other student while completing
it. I understand that, if I fail to honor this agreement, I will receive a score
of ZERO for this exam and will be subject to possible disciplinary action.

Name:

Signature:

You must sign here. Otherwise you will receive a 2-point penalty.

Read the questions carefully.
Some questions have conditions and restrictions.

This is an open-book, open-note exam. You may use any book, notes, or program printouts.
No personal electronic device is allowed. You may not borrow books from other students.

Two learning objectives (recursion and structure) are tested in this exam. To pass an
objective, you must receive 50% or more points in the questions in this exam.
If you have already passed a learning objective earlier, you will never “unpass” the learning
objective later.

1

Contents

1 Recursive Formula (5 points). Learning Objective Recursion 3

2 Integer Partition (5 points). Learning Objective Recursion 6

3 Structure (4 points). Learning Objective Structure 9

4 Structure and Sorting (4 points). Learning Objective Structure 13

5 Structure (2 points). Learning Objective Structure 17

Learning Objective 1 (Recursion) Pass Fail

Learning Objective 3 (Structure) Pass Fail

Total Score:

2

1 Recursive Formula (5 points). Learning Objective

Recursion

For a given positive integer, we want to partition it into the sum of some positive integers,
or itself. For example, 1 to 5 can be partitioned as

1 = 1 2 = 1 + 1 3 = 1 + 1 + 1 4 = 1 + 1 + 1 + 1

= 2 = 1 + 2 = 1 + 1 + 2

= 2 + 1 = 1 + 2 + 1

= 3 = 1 + 3

= 2 + 1 + 1

= 2 + 2

= 3 + 1

= 4

5 = 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 2

1 + 1 + 2 + 1

1 + 1 + 3

1 + 2 + 1 + 1

1 + 2 + 2

1 + 3 + 1

1 + 4

2 + 1 + 1 + 1

2 + 1 + 2

2 + 2 + 1

2 + 3

3 + 1 + 1

3 + 2

4 + 1

5

We observe that there exists
• One way to partition 1.
• Two ways to partition 2.
• Four ways to partition 3.
• Eight ways to partition 4.

In general, there are 2n−1
ways to partition value n. You do not have to prove this.

Also by observation, we find
• One way to partition 1 using only odd numbers, i.e., itself

3

• One way to partition 2 using only odd numbers, i.e., 1 + 1. The value 2 cannot be
used because it is an even number.

• Two ways to partition 3 using only odd numbers, i.e., 1 + 1 + 1 and 3 itself.
• Three ways to partition 4 using only odd numbers, i.e.,

1 + 1 + 1 + 1,
1 + 3,
and 3 + 1.

• Five ways to partition 5 using only odd numbers, i.e.,
1 + 1 + 1 + 1 + 1,
1 + 1 + 3,
1 + 3 + 1,
3 + 1 + 1,
and 5.

Q1: How many ways can you partition 8 using only odd numbers (1 point)?
Q2: How many ways can you partition value n (n > 2) using only odd numbers? Write
down the general rule (4 points). You can write down a recursive form. You do not need to
write the closed form.
Hint: You may want to solve Q2 before answering Q1.
Consider whether n is an odd number or an even number.
Do not intend to draw a pattern from f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 3, and f(5) = 5.
You should observe the pattern for a general value n.
You must explain your answer. An answer without explanation will receive no point.
This question asks you to write a mathematical formula, not a C program.

4

2 Integer Partition (5 points). Learning Objective Re-

cursion

Consider the following program that partitions a positive integer.
By observation,

• Only one number is used to partition 1, i.e., itself.
• Three numbers are used to partition 2, i.e., 1 + 1 (two numbers) and 2 (one number).
• Eight numbers are used to partition 3, i.e., 1 + 1 + 1 (three numbers), 1 + 2 (two

numbers), 2 + 1 (two numbers) and and 3 (one number).
Modify the program below so that it reports to the main function in line 34 how many
numbers are used in generating the partitions. The program needs to print how many
numbers are used and does not need to print the partitions (such as 1 + 1 + 1 ...).

Hint: Try to make as few changes to the program as possible to save your time. One solution
needs to add/remove/change no more than 10 lines of code and no more than 100 characters.
If you find youselves writing a lot of code, please consider to find a simpler solution.

The following table is for your reference.
input argument returned value

1 1
2 3
3 8
4 20

You should modify the program to compute how many numbers are used and do not write
a mathematical formula. You will receive no point if you write a mathematical formula.

#include <stdio.h>1
#include <stdlib.h>2
#include <string.h>3

4
static void partitionHelper(int value , int * arr , int ind)5
{6

if (value == 0)7
{8

return;9
}10

int nextVal;11
for (nextVal = 1; nextVal <= value; nextVal ++)12

{13
arr[ind] = nextVal;14

5

partitionHelper(value - nextVal , arr , ind + 1);15
}16

}17
18

int partition(int value)19
{20

int * arr;21
arr = malloc(sizeof(int) * value);22
partitionHelper(value , arr , 0);23
free (arr);24
return 0;25

}26
27

int main(int argc , char * * argv)28
{29

int val;30
int MAXLENGTH = 8;31
for (val = 1; val <= MAXLENGTH; val ++)32

{33
int total = partition(val);34
printf ("%d numbers are used to partition %d\n", total , val);35

}36
return EXIT_SUCCESS;37

}38

6

3 Structure (4 points). Learning Objective Structure

Consider the following declaration of a structure.

#ifndef STUDENT_H1
#define STUDENT_H2
typedef struct3
{4

int id;5
char * name;6

} Student;7
#endif8

The following program contains four swap functions. The purpose is to swap the two input
arguments of the Student structure. Please identify which of the four swap functions can
correctly swap the attributes of the two arguments.
For each function, please answer “Yes” (correctly swap the arguments and the changes are
visible in the calloer) or “No” (not correctly swap the arguments).
Briefly explain the reasons of your answers. An answer without explanation will receive
no point.

• swap1: Yes No
Reason:

• swap2: Yes No
Reason:

• swap3: Yes No
Reason:

• swap4: Yes No
Reason:

The manual of strdup is included here.

SYNOPSIS

#include <string.h>

7

char *strdup(const char *s);

DESCRIPTION

The strdup() function returns a pointer to a new string which is a

duplicate of the string s. Memory for the new string is obtained with

malloc(3), and can be freed with free(3).

#include <stdio.h>1
#include <stdlib.h>2
#include <string.h>3
#include "student.h"4
void swap1(Student a, Student b)5
{6

Student t = a;7
a = b;8
b = t;9

}10
11

void swap2(Student a, Student b)12
{13

int id;14
char * name;15
name = a.name;16
id = a.id;17
a.id = b.id;18
a.name = b.name;19
b.id = id;20
b.name = name;21

}22
23

void swap3(Student * a, Student * b)24
{25

Student * t = a;26
a = b;27
b = t;28

}29
30

void swap4(Student * a, Student * b)31
{32

int id;33
char * name;34
id = a -> id;35

8

name = a -> name;36
a -> id = b -> id;37
a -> name = b -> name;38
b -> id = id;39
b -> name = name;40

}41
42

int main(int argc , char * * argv)43
{44

char * name1 = "Purdue ";45
char * name2 = "Engineering ";46
Student s1;47
Student s2;48

49
s1.id = 264;50
s1.name = strdup(name1);51
s2.id = 2013;52
s2.name = strdup(name2);53
printf ("s1: %d, %s\n", s1.id, s1.name);54
printf ("s2: %d, %s\n", s2.id, s2.name);55
swap1(s1, s2);56
printf ("s1: %d, %s\n", s1.id, s1.name);57
printf ("s2: %d, %s\n", s2.id, s2.name);58
free(s1.name);59
free(s2.name);60
printf ("===============================\n");61

62
s1.id = 264;63
s1.name = strdup(name1);64
s2.id = 2013;65
s2.name = strdup(name2);66
printf ("s1: %d, %s\n", s1.id, s1.name);67
printf ("s2: %d, %s\n", s2.id, s2.name);68
swap2(s1, s2);69
printf ("s1: %d, %s\n", s1.id, s1.name);70
printf ("s2: %d, %s\n", s2.id, s2.name);71
free(s1.name);72
free(s2.name);73
printf ("===============================\n");74

75
s1.id = 264;76
s1.name = strdup(name1);77

9

s2.id = 2013;78
s2.name = strdup(name2);79
printf ("s1: %d, %s\n", s1.id, s1.name);80
printf ("s2: %d, %s\n", s2.id, s2.name);81
swap3(& s1, & s2);82
printf ("s1: %d, %s\n", s1.id, s1.name);83
printf ("s2: %d, %s\n", s2.id, s2.name);84
free(s1.name);85
free(s2.name);86
printf ("===============================\n");87

88
s1.id = 264;89
s1.name = strdup(name1);90
s2.id = 2013;91
s2.name = strdup(name2);92
printf ("s1: %d, %s\n", s1.id, s1.name);93
printf ("s2: %d, %s\n", s2.id, s2.name);94
swap4(& s1, &s2);95
printf ("s1: %d, %s\n", s1.id, s1.name);96
printf ("s2: %d, %s\n", s2.id, s2.name);97
free(s1.name);98
free(s2.name);99

100
return EXIT_SUCCESS;101

}102

10

4 Structure and Sorting (4 points). Learning Objec-

tive Structure

Consider the following declaration of a structure.

#ifndef STUDENT_H1
#define STUDENT_H2
typedef struct3
{4

int id;5
char * name;6

} Student;7
#endif8

The following function sorts an array of Student objects using the qsort function. The
objects are sorted by the names. Please fill the missing code.
The manual of qsort is included here:

NAME

qsort, qsort_r - sort an array

SYNOPSIS

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

DESCRIPTION

The qsort() function sorts an array with nmemb elements of size size.

The base argument points to the start of the array.

The contents of the array are sorted in ascending order according to a

comparison function pointed to by compar, which is called with two

arguments that point to the objects being compared.

The comparison function must return an integer less than, equal to, or

greater than zero if the first argument is considered to be respec

tively less than, equal to, or greater than the second. If two members

compare as equal, their order in the sorted array is undefined.

#include <stdio.h>1
#include <stdlib.h>2
#include <string.h>3

11

#include "student.h"4
int compareStudent(const void * p1, const void * p2)5
{6

/* compare students by their names */7
/* hint: use strcmp */8
/* fill in the code here (2 points) */9

10
11
12
13
14
15
16
17
18
19

}20
21

void sortStudent(Student * arr , int num)22
{23

/* fill in the code here (1 point) */24
/* call qsort */25

26
27
28
29
30
31
32

}33
34

void printStudent(Student * arr , int num)35
{36

int ind;37
for (ind = 0; ind < num; ind ++)38

{39
printf (" Student [%d]: name = %s, id = %d\n",40

ind , arr[ind].name , arr[ind].id);41
}42

}43
44

int main(int argc , char * * argv)45

12

{46
int num = 10;47
int maxlen = 100;48
int maxval = 10000;49
Student * stu;50
int ind;51
stu = malloc(sizeof(Student) * num);52
for (ind = 0; ind < num; ind ++)53

{54
stu[ind].id = rand() % maxval;55
stu[ind].name = malloc(sizeof(char) * maxlen);56
sprintf(stu[ind].name , "purdue%dspring", rand() % maxval);57

}58
printStudent(stu , num);59
printf ("===============================\n");60
sortStudent(stu , num);61
printStudent(stu , num);62
/* release memory */63
/* fill in code here (1 point) */64

65
66
67
68
69
70
71

return EXIT_SUCCESS;72
}73

13

5 Structure (2 points). Learning Objective Structure

Consider the following program.

#include <stdio.h>1
#include <stdlib.h>2
#include <string.h>3
typedef struct4
{5

int value;6
int * iptr;7

} IntStruct;8
9

void f(int n, IntStruct * istu)10
{11

if (n == 0)12
{13

return;14
}15

(istu -> value) ++;16
(*(istu -> iptr)) ++;17
f(n - 1, istu);18

}19
20

int main(int argc , char * * argv)21
{22

IntStruct * it;23
it = malloc(sizeof(IntStruct));24
it -> value = 0;25
it -> iptr = NULL;26
f(5, it);27
free (it -> iptr);28
free (it);29
return EXIT_SUCCESS;30

}31

The program has Segmentation fault during execution.
• Which line causes Segmentation fault? If there are multiple places that can cause

Segmentation fault, find the first one encountered when the program runs. You will
receive no point if you mark two or more places.

• Explain the reason.

14

