
ECE264 Summer 2013
Exam 1, June 20, 2013

In signing this statement, I hereby certify that the work on this exam is my
own and that I have not copied the work of any other student while completing
it. I understand that, if I fail to honor this agreement, I will receive a score
of ZERO for this exam and will be subject to possible disciplinary action.

Signature:

You must sign here. Otherwise you will receive a 2-point penalty.

Read the questions carefully.
Some questions have conditions and restrictions.

This is an open-book, open-note exam. You may use any book, notes, or program printouts.
No personal electronic device is allowed. You may not borrow books from other students.

One learning objective (recursion) is tested in this exam. To pass an objective, you must
receive 50% or more points in this exam.

1

Contents

1 Recursive Formula (5 points) 3

2 Partition Using Odd Numbers (5 points) 4

3 Trace Recursive Function (5 points) 6

4 Change Recursive Function (5 points) 7
4.1 Number of Lines . 8
4.2 Unique Lines . 8

Learning Objective 1 (Recursion) Pass Fail

Total Score:

2

1 Recursive Formula (5 points)

For a given positive integer, we want to partition it into the sum of some positive integers,
or itself. For example, 1 to 4 can be partitioned as

1 = 1 2 = 1 + 1 3 = 1 + 1 + 1 4 = 1 + 1 + 1 + 1

= 2 = 1 + 2 = 1 + 1 + 2

= 2 + 1 = 1 + 2 + 1

= 3 = 1 + 3

= 2 + 1 + 1

= 2 + 2

= 3 + 1

= 4

• One way to partition 1.
• Two ways to partition 2.
• Four ways to partition 3.
• Eight ways to partition 4.

In general, there are 2n−1
ways to partition value n. You do not have to prove this.

In the above examples,
• when partitioning 1, “2” is never used
• when partitioning 2, “2” is used once.
• when partitioning 3, “2” is used in two different lines.
• when partitioning 4, “2” is used in four different lines.

Question: When partitioning value n (n > 2), how many lines contain “2”?

Let f(n) be the number of lines containing “2” used for partitioning n. f(1) = 0 and
f(2) = 1. Write down the general rule expressing f(n). You may use f(n− 1), f(n− 2)
and other terms related to n, such as 2n or n. You need to write down a recursive form; you
do not need to write the closed form.

You must explain your answer. An answer without explanation will receive no point.

This question asks you to write a mathematical formula, not a C program.

3

2 Partition Using Odd Numbers (5 points)

Consider the following program.

#include <stdio.h>1
#include <stdlib.h>2
#include <string.h>3
#define MAXLENGTH 84

5
static void printPartition(int * arr , int len)6
{7

int ind;8
printf ("= ");9
for (ind = 0; ind < len - 1; ind ++)10

{11
printf ("%d + ", arr[ind]);12

}13
printf ("%d\n", arr[len - 1]);14

}15
16

static void partitionHelper(int value , int * arr , int ind)17
{18

if (value == 0)19
{20

printPartition(arr , ind);21
return;22

}23
int nextVal;24
for (nextVal = 1; nextVal <= value; nextVal ++)25

{26
arr[ind] = nextVal;27
partitionHelper(value - nextVal , arr , ind + 1);28

}29
}30

31
void partition(int value)32
{33

printf (" partition %d\n", value);34
int arr[MAXLENGTH];35
partitionHelper(value , arr , 0);36

}37
38

int main(int argc , char * * argv)39

4

{40
int val;41
for (val = 1; val <= MAXLENGTH; val ++)42

{43
partition(val);44

}45
return EXIT_SUCCESS;46

}47

Modify the program so that it generates the partitions that use odd numbers (1, 3, 5, ...)
only. The program must generate only the valid partitions. For example, when partitioning
4, the following are valid:

1 + 1 + 1 + 1

1 + 3

3 + 1

The following are invalid because at least one even number is used in each line:

1 + 1 + 2

1 + 2 + 1

2 + 1 + 1

2 + 2

4

You will not receive points if the program generates partitions with even numbers, even
though the program does not print these invalid partitions (by checking before printing).

5

3 Trace Recursive Function (5 points)

Consider the following program.

#include <stdio.h>1
#include <stdlib.h>2
int f(int n, int * sum)3
{4

(* sum) ++; /* how many times f is called? */5
if ((n == 0) || (n == 1))6

{7
return 1;8

}9
int i;10
int val = 0;11
for (i = 0; i < n; i ++)12

{13
int a = f(i, sum);14
int b = f(n - i - 1, sum);15
val += a * b;16

}17
return val;18

}19
20

int main(int argc , char * * argv)21
{22

int sum = 0;23
int val = 3;24
int fv = f(val , & sum);25
printf ("f(%d) = %d, sum = %d\n", val , fv , sum);26
return EXIT_SUCCESS;27

}28

What are the values of fv and sum printed by this program? Explain how you get the
answers.
You need to write two answers.
You can write an arithmetic expression without calculating the result. For example, if the
answer is 17, you can write 1 + 5 + 11.

6

4 Change Recursive Function (5 points)

The following is a correct program to permute a set of characters.
If the second call of the swap function is removed (marked by the comment), what will the
program print?
Explain your answer.

#include <stdio.h>1
#include <stdlib.h>2
#define MAX_LENGTH 43

4
static void printPermutation(char * charset , int len)5
{6

int ind;7
for (ind = 0; ind < len; ind ++)8

{9
printf ("%c ", charset[ind]);10

}11
printf ("\n");12

}13
14

static void swap(char * a, char * b)15
{16

char t = * a;17
* a = * b;18
* b = t;19

}20
21

static void permuteHelper(char * charset , int len , int ind)22
{23

if (ind == len)24
{25

printPermutation(charset , len);26
}27

int pos;28
for (pos = ind; pos < len; pos ++)29

{30
swap(& charset[pos], & charset[ind]); // first call of swap31
permuteHelper(charset , len , ind + 1);32
// remove the following line (second call of swap)33
swap(& charset[pos], & charset[ind]); // <--- remove this line34
// remove the previous line35

}36

7

}37
38

void permute(char * charset , int len)39
{40

permuteHelper(charset , len , 0);41
}42

43
int main(int argc , char * * argv)44
{45

char set[MAX_LENGTH] = {’A’, ’B’, ’C’, ’D’};46
permute(set , MAX_LENGTH);47
return EXIT_SUCCESS;48

}49

A correct permutation program prints n! lines for a set of n elements and each line is unique.

4.1 Number of Lines

How many lines does this program print after removing the second call of swap?
If the program does not print n! lines, how many lines does this program print?

4.2 Unique Lines

Does this program produce unique lines after removing the second call of swap?
If the lines are not unique, how many unique lines are printed?

8

