
ECE 264 Purdue University

Yung-Hsiang Lu

Please send corrections, questions, suggestions to yunglu@purdue.edu.

updated on Thursday 3rd January, 2013

ii

Contents

I C Language Features 1

1 Functions 3

1.1 Purposes of Functions . 3

1.2 main Function . 4

1.3 Function with Return Value . 11

1.4 Function with Control . 13

1.5 Function Calls Function . 14

1.6 Practice Problems . 18

2 Computer Memory (Stack) 19

2.1 Address and Value . 19

2.2 Stack Memory . 21

2.3 Function Return Location . 22

2.4 Call Stack . 25

2.5 Scope . 28

2.6 Return Value . 31

2.7 Practice Problems . 35

iii

CONTENTS CONTENTS
3 Recursion 37

3.1 Examples . 37

3.1.1 Select Balls . 37

3.1.2 One-Way Street . 38

3.1.3 Integer Partition . 40

3.1.4 Tower of Hanoi . 41

3.2 C Implementation . 44

3.2.1 Select Balls . 45

3.2.2 One-Way Street . 53

3.2.3 Integer Partition . 54

3.2.4 Tower of Hanoi . 57

3.2.5 Fibonacci Numbers . 59

3.3 Practice Problems . 62

4 Pointer 67

4.1 Pointer and Address . 67

4.2 Pointer and Argument . 69

4.3 Array and Argument . 72

4.4 Practice Problems . 73

5 Memory Management (Heap) 77

5.1 Create a Fixed-Size Array . 77

5.2 Create an Array using malloc . 78

5.3 Stack and Heap . 80

5.4 Array and Address . 84

5.5 Function Return a Heap Address . 85

5.6 Two-Dimensional Array in C . 87

5.7 Pointer and Argument . 89

5.8 Use valgrind to Detect Memory Leak . 92

iv

CONTENTS CONTENTS
6 String 95

6.1 Compare Strings using strcmp . 96

6.2 Use strstr to Detect Substring . 97

6.3 Understand argv . 99

6.4 Count Substrings . 102

6.5 Practice Problems . 106

7 Structure 107

7.1 Vector . 107

7.2 Object as an Argument . 109

7.3 Object and Pointer . 112

7.4 Return an Object . 114

7.5 Object and malloc . 115

7.6 Constructor and Destructor . 118

7.7 Structure in Structure . 125

8 File Operations 129

8.1 Read Character by Character Using fgetc . 130

8.2 Read Integer . 132

8.3 Read and Write Integers . 134

8.4 Read String . 136

8.5 fseek and ftell . 137

8.6 Binary File and Object . 137

8.7 Practice Problems . 141

v

CONTENTS CONTENTS
9 Program with Multiple Files 143

9.1 Header File . 144

9.2 Compile and Link . 147

9.3 Makefile . 149

9.4 Use Makefile for Testing . 152

9.5 Practice Problems . 154

10 Dynamic Structures 155

10.1 Linked List . 156

10.1.1 Node . 156

10.1.2 Insert . 157

10.1.3 Delete . 161

10.1.4 C Program . 165

10.2 Binary Tree . 171

10.2.1 Node . 171

10.2.2 Insert . 172

10.2.3 Search . 177

10.2.4 Print . 178

10.2.5 Delete . 179

10.2.6 Iterator . 182

10.2.7 Destruct . 187

10.2.8 main . 187

10.2.9 Makefile . 189

10.3 Practice Problems . 191

vi

CONTENTS CONTENTS
11 More Practice Problems 193

11.1 Anagrams . 193

11.1.1 Distinct Letters . 193

11.1.2 Unique Words . 193

11.2 Integer Partition . 193

11.2.1 All Partitions . 193

11.2.2 Distinct Numbers . 194

11.2.3 Increasing Numbers . 195

11.2.4 Only 1-5 Can Be Used . 195

11.3 Arrange Three Balls . 196

11.3.1 List All Options . 196

11.3.2 Count without Listing All Options . 196

11.4 Encryption . 196

II Programming Tools 199

12 Debugger gdb and ddd 201

12.1 Trace a Program . 202

12.2 Show Call Stack . 206

12.3 Locate Segmentation Fault . 209

12.4 Print Object . 212

12.5 DDD . 214

12.6 Prevent Bugs . 219

12.7 Controversy about assert . 223

12.8 Practice Problems . 224

13 Test Coverage 227

vii

CONTENTS CONTENTS

viii

List of Figures

1.1 When a function calls another function, the program executes the code in the called
function. When the called function finishes, the program returns to the caller, right
below the function call. The arrows mean the flow of the program. The numbers
indicates the sequence of execution. 17

2.1 Push and pop of stack. (a) Data are pushed (stored) onto a stack. Originally, the top
of the stack stores number 720. Number 653 is pushed to the top of the stack. (b)
Data are retrieved (popped) from the stack. Push and pop can occur at only the top
of the stack. This figure uses integers as an example. A stack can store any type of
data: integer, character, double, string, or programmer-defined types as explained
in Chapter 7. 22

2.2 (a) The stack changes after f1, f2, and f3 are called. Each function call pushes the
called function onto the stack. (b) When f3 finishes, it is popped from the stack and
now f2 is at the top. When f2 finishes, it is popped from the stack and f1 is at the
top. 22

2.3 Compilers (such as gcc) mark the return location (RL) after each function call. . . . 23

3.1 To decide f(n), we consider the options for the first ball. If the first ball is blue, the
remaining n − 1 ball have f(n − 1) options. If the first ball is red, the second ball
must be blue and remaining n− 2 ball have f(n− 2) options. 38

3.2 The city’s streets are either east-west bound or north-south bound. A car can move
only east bound or north bound. 39

3.3 (a) A driver cannot turn anywhere from A to B. (b) A driver cannot turn anywhere
from C to D. (c) There are some turning options from E to F. At E, the driver can go
north bound first or east bound first, as indicated by the two arrows. 39

3.4 Tower of Hanoi. (a) Some disks are arranged along pole A and the goal is to move
all disks to pole B, as shown in (b). A larger disk can never be placed above a smaller
disk. A third pole, C, is used when necessary. 41

ix

LIST OF FIGURES LIST OF FIGURES
3.5 Moving one disk from A to B requires only one step. 41

3.6 Moving two disks from A to B requires three steps. 42

3.7 Moving two disks from A to B requires three steps. 43

3.8 Computating f(5) requires calling f(4) and f(3). Computating f(4) requires calling
f(3) and f(2). 60

3.9 Redraw Figure 3.8. This looks like a binary tree: computing each value requires the
sum of two values. 61

5.1 (a) Call stack. After calling malloc, arr2’s value is an address in the heap memory.
In this example, we use 10000 for the value. Six memory locations are allocated and
they are adjacent. (b) Heap memory. The values have not been assigned so “?” is
used for their values. We need to use a symbol in the stack (arr2) to access heap
memory so the heap memory has no column for symbols. 81

5.2 A two-dimensional array is created in two steps. The first step creates an array
of integer pointers. In the second step, each pointer stores the address of the first
element in an integer array. 88

8.1 A text file is like a stream. This example uses file2.c as the input file. (a) After
calling fopen, the stream starts from the very first character of the file and ends
with EOF. (b)(c) Calling fgetc each time takes one character out from the stream.
(d) After calling fgetc enough times, the characters in the file are retrieved. (e)
Finally, the end of file character EOF is returned. 132

8.2 A program uses fscanf to read integers from a file; fscanf is able to read num-
bers separated by space or new line (’\n’). 134

10.1 A linked starts with no Node. This figure shows three views: (a) the source code
view, (b) illustration, and (c) stack memory. The illustration view is the most com-
mon in literature. The three views are shows simultaneously so that you can under-
stand how to write code and what happens in computer’s memory. In (b), when a
pointer’s value is NULL, it is common to make it point to “Ground.” 157

10.2 Creating a Node object whose value is 917. 157

10.3 Replacing the three lines by using List insert. 158

10.4 Calling List insert again to insert another Node object. 159

10.5 Insert the third object by calling List insert again. 160

10.6 Insert the third object by calling List insert again. 161

x

LIST OF FIGURES LIST OF FIGURES
10.7 To delete a Node object, we create a new pointer p. Its value is the same as head’s

value. 162

10.8 We create another pointer q; its value is the same as p->next. 163

10.9 Modify p->next and bypass the node that is about to be deleted. 164

10.10Release the memory pointed by q. 165

10.11An empty tree has one pointer called root and its value is NULL. 172

10.12A binary tree with only one Node. Both left and right are NULL. This node is
the root because it has no parent. It is also a leaf node because it has no child. 173

10.13A binary tree with two Nodes. The node with value 917 is still the root; it is no
longer a leaf node because it has one child. The node with value -504 is a leaf node
because it has no child. 174

10.14A binary tree with three Nodes. 175

10.15A binary tree with five Nodes. We create a new view (d) to simplify the representa-
tion of a tree. 176

10.16(a) The original binary search tree. (b) Deleting the node “5”. This node has no child. 180

10.17Deleting the node “14”. This node has one child. 180

10.18Deleting the node “8”. The node has two children. (a) Exchange the values of this
node and its successor. (b) Deleting the successor. 181

10.19The iterator after calling TreeIterator construct. 183

10.20The linked has three nodes after calling TreeIterator visitNext because the
root’s two children are also inserted. 184

12.1 Start-up window of DDD. 214

12.2 DDD opens the vector.c program. 215

12.3 A breakpoint is set. A STOP symbol is shown at the line. 216

12.4 The program stops at the breakpoint. 217

12.5 DDD shows the attributes of v1. 218

xi

LIST OF FIGURES LIST OF FIGURES

xii

List of Tables

3.1 The first ten values of Fibonacci Numbers. 60

3.2 Coefficients for computing f(n). 61

3.3 Coefficients for computing f(n). 62

4.1 Four different usages of * in C programs. Sometimes you can see LHS for “left hand
side” and RHS for “right hand side”. 69

5.1 The first part of this table repeats Table 4.1. The second part summarizes how to
create an arry on heap memory and to access the array’s elements. 84

8.1 Functions for opening, writing to, and reading from text and binary files. 141

xiii

Part I

C Language Features

1

Chapter 1

Functions

1.1 Purposes of Functions

C programs are composed of functions. A special function called main is the starting point. We
should not put everything inside the main function. Putting everything inside the main function
is like writing an article with only one paragraph. Most articles have multiple paragraphs and
most programs have many functions. As a rule of thumb, a function should contain at most
50 lines1. Why? If a function is too long, it becomes difficult to understand and error-prone.
Functions serve many purposes, for example

• Computation is conducted by several functions. This can make each function shorter and
easier to understand. Each function should focus on doing only one thing.

• If something needs to be done over and over again, it can be implemented in a function
and the function is called multiple times. If slight changes are needed each time, the differ-
ences can be specified using the function’s arguments. This is an important principle when
creating a function. A function’s behavior should be controlled by the arguments only. If
a function’s behavior is affected by anything more than the arguments (for example, by a
global variable), the function may behave differently even if the arguments have the same
values. When this occurs, understanding the function becomes difficult.

• When a program becomes longer, it may be organized into several files. Functions may be
implemented in different files and gcc can link several files into a single executable program.
We will talk about linking in Section 9.2.

In your first C course, you should have seen some functions such as scanf and printf. They
are provided by the C language. This chapter talks about “programmer-defined” functions. Before
we do that, let’s review what you have learned in the first programming class.

1The number is for reference. This is not a strict rule.

3

1.2 main Function

A C program starts at the main function: a function whose name is main. This is a special function
and every program must have it. Let’s consider our first sample program in this book:

/* file: args.c
purpose: print the arguments

*/
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char * argv[])
{

int cnt;
printf("There are %d arguments.\n", argc);
printf("The arguments are:\n");
for (cnt = 0; cnt < argc; cnt ++)

{
printf("argv[%d] is %s\n", cnt, argv[cnt]);

}
return EXIT_SUCCESS;

}

ECE264. updated on Thursday 3rd January, 2013 4 Please send corrections, comments, and
questions to yunglu@purdue.edu

This book uses Linux for the programming environment. To compile this program, start a
Linux Terminal. In Ubuntu Linux, click Applications, select Accessories and scroll down to
Terminal. You can add Terminal to the launch panel as shown below.

ECE264. updated on Thursday 3rd January, 2013 5 Please send corrections, comments, and
questions to yunglu@purdue.edu

This figure shows a terminal window. Linux > is the command prompt. Your command
prompt may be different from the one shown here. A commonly used prompt (the default one) is
the dollar sign $.

ECE264. updated on Thursday 3rd January, 2013 6 Please send corrections, comments, and
questions to yunglu@purdue.edu

Many editors are available in Linux. I perfer emacs because of the syntax highlight feature
shown below.

You can invoke emacs in two ways.

1. emacs -nw args.c

This uses emacs inside the terminal as shown above; the option -nw means not to create a
new window.

2. emacs args.c &

This launches emacs in a separate window and the symbol & allows you to use the termainl
and emacs at the same time.

ECE264. updated on Thursday 3rd January, 2013 7 Please send corrections, comments, and
questions to yunglu@purdue.edu

Type this command in the terminal to compile the program.

> gcc -Wall -Wshadow args.c -o args

The first symbol > is the shell prompt and you do not type it. The command starts from gcc.
This command means

• execute the gcc program

• turn on warning messages by adding the -Wall -Wshadow options.

• the input C source code is args.c. By convention, the source code of a C program is stored
in files with .c extension.

• the output executable program, after -o, is called args. By convention in UNIX, a program
has no extension. This is different from Windows; in Windows programs have the .exe
extension in the file names.

The following shows one execution of the program.

> ./args hello C program 123 45678
There are 6 arguments.
The arguments are:
argv[0] is ./args

ECE264. updated on Thursday 3rd January, 2013 8 Please send corrections, comments, and
questions to yunglu@purdue.edu

argv[1] is hello
argv[2] is C
argv[3] is program
argv[4] is 123
argv[5] is 45678

The leading ./ means to find a program inside the current directory (also called folder). This
ensures that the program is the program you have just created. It is possible to have several
programs in different directories. By adding ./, the args program in the current directory is
executed.

The line ./args hello ... is the command line and they form command line arguments.
This command has six arguments stored in the argv array. The first argument is always the name
of the program itself. Hence, argv[0] is “./args”. In C programs, an array’s indexes start from
zero, not one. The terminal automatically separates the arguments based on space. You can use
one, two, or more spaces to separate the arguments. The following two commands do exactly the
same thing even though the latter has more spaces between arguments.

> ./args hello C program 123 45678
> ./args hello C program 123 45678

This main function

int main(int argc, char * argv[])

ECE264. updated on Thursday 3rd January, 2013 9 Please send corrections, comments, and
questions to yunglu@purdue.edu

takes two arguments.

By convention, the two arguments are called argc and argv. You should use argc and argv
because every C programmer knows what they mean. The first argument argc means the num-
ber of arguments in the command line. Here, ’c’ means count. The second argument is called
argv; here ’v’ means values. Each argument is a string. C does not really have strings; instead, C
uses an array of characters for a string. A string must end with the special character ’\0’.

What does -Wall mean? It tells gcc to turn on warning messages. What does -Wshadow
mean? It tells gcc to detect shadow variables. The following example contains a shadow variable,
val. Its value is initialized to 5. Suppose inside the {...} block, we define another variable of
the same name and the value is -8. When the block finishes, the inner val is no longer valid so
the value goes back to 5.

/* file: shadow.c
purpose: example of a shadow variable

*/
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char * argv[])
{

int val = 5;
printf("val = %d\n", val);
{

int val = -8;
printf("val = %d\n", val);

}
printf("val = %d\n", val);
return EXIT_SUCCESS;

}

The output of this program is

val = 5
val = -8
val = 5

Why are shadow variables bad? They make your programs difficult to understand. You think
you have changed val to -8 but its value goes back to 5 later. By adding -Wshadow after gcc, you
will get this message

shadow.c: In function ’main’:
shadow.c:11: warning: declaration of ’val’ shadows a previous local
shadow.c:8: warning: shadowed declaration is here

ECE264. updated on Thursday 3rd January, 2013 10 Please send corrections, comments, and
questions to yunglu@purdue.edu

This helps you detect and remove shadow variables.

You should always turn on gcc warning messages and remove all warn-
ings as soon as possible. Warning messages often indicate errors. Ignoring
warning messages will make your program buggy.

So far, I have emphsized more than once the importance of making your programs easy to
understand. As your programs become more complex, this will become increasingly important.

1.3 Function with Return Value

The following is an example showing the programmer-defined add function.

/* file: add.c
purpose: show a programmer-defined function called add

*/
#include <stdio.h>
#include <stdlib.h>
int add(int a, int b, int c)
{

return (a + b + c);
}

int main(int argc, char * argv[])
{

if (argc != 4)
{

printf("need 3 integers.\n");
return EXIT_FAILURE;

}
int x, y, z, s;
x = (int) strtol(argv[1], NULL, 10);
y = (int) strtol(argv[2], NULL, 10);
z = (int) strtol(argv[3], NULL, 10);

s = add (x, y, z);

printf("%d + %d + %d = %d.\n", x, y, z, s);
return EXIT_SUCCESS;

}

ECE264. updated on Thursday 3rd January, 2013 11 Please send corrections, comments, and
questions to yunglu@purdue.edu

This program needs three arguments (in addition to the program’s name). Therefore, the pro-
gram checks whether argc is four.

You should always check argc before using argv[1] (or argv[2] or
argv[3], . . .). If argc is 2 and your program uses argv[3], the program
will crash.

The program converts the arguments into three integers using the strtol function provided
by C. The first argument of strtol is the string to be converted. The second argument is a pointer
to a string for storing the address of the string which is not a valid number. You can use NULL for
the second argument to indicate that you do not care what is left after conversion. The third
argument is the base. The program uses 10 for decimal values. You may have heard the function
atoi, which can also convert a string to an integer. The problem of atoi is that it does not handle
errors (i.e. the string is not a valid integer) well. Thus, strtol is a better choice for making your
program more robust. This program calls the add function. The function adds the three integers
and return the result. This value is stored in s. Use the gcc command to compile the program
and generate the executable called add.

> gcc -Wall -Wshadow add.c -o add

The following shows two executions of the program.

> ./add 3 18 71
3 + 18 + 71 = 92.

> ./add 6 52 86
6 + 52 + 86 = 144.

A C program may call a function and discard the returned value. For example, the program
may call

add(x, y, z);

without assigning the returned value to s (or anything), even though add returns an integer.

If a function does not return anything, assigning the returned value to a variable is a syntax
error. For example,

ECE264. updated on Thursday 3rd January, 2013 12 Please send corrections, comments, and
questions to yunglu@purdue.edu

void f(void)
{

/* not return anyting */
}

void g(void)
{

int a = f(); /* syntax error */
}

In this example f does not return anything. When g calls f, g assigns f’s return value to an
integer variable a. This is invalid.

1.4 Function with Control

A function can have if condition inside to determine the return value of the function.

/* file: funcif.c
purpose: a function whose output is controled by the input

*/
#include <stdio.h>
#include <stdlib.h>

ECE264. updated on Thursday 3rd January, 2013 13 Please send corrections, comments, and
questions to yunglu@purdue.edu

int func(int a, int b)
{

if (a > b)
{

return 1;
}

if (a < b)
{

return -1;
}

return 0;
}

int main(int argc, char * argv[])
{

if (argc != 3)
{

printf("need 2 integers.\n");
return EXIT_FAILURE;

}
int x, y;
x = (int) strtol(argv[1], NULL, 10);
y = (int) strtol(argv[2], NULL, 10);
printf("func(%d, %d) = %d.\n", x, y, func(x, y));
return EXIT_SUCCESS;

}

The following shows three executions with different input arguments

> ./funcif 5 9
func(5, 9) = -1.
> ./funcif 9 5
func(9, 5) = 1.
> ./funcif 9 9
func(9, 9) = 0.

1.5 Function Calls Function

A programmer-defined function can call a C library function (such as printf and scanf) as well
as one or more programmer-defined functions.

/* file: func12.c
purpose: func1 and func2 are two programmer-defined functions.
main calls func1 and func1 calls func2

ECE264. updated on Thursday 3rd January, 2013 14 Please send corrections, comments, and
questions to yunglu@purdue.edu

*/
#include <stdio.h>
#include <stdlib.h>

int func1(int a);
int func2(int a);

int func1(int a)
{

printf("beginning of func1(%d)\n", a);
func2(a + 5);
printf("end of func1 (%d)\n", a);
return 0;

}

int func2(int a)
{

printf("beginning of func2(%d)\n", a);
printf("end of func2 (%d)\n", a);
return 0;

}

int main(int argc, char * argv[])
{

func1(5);
return EXIT_SUCCESS;

}

The file first declares two functions func1 and func2 as shown in these two lines:

int func1(int a);
int func2(int a);

What is a function declaration? It includes the following three pieces of information:

1. the return type, for example int or double. When we talk about user-defined types in
Chapter 7, it can also be a user-defined type. If a function does not return anything, we use
void.

2. the name of the function. Each function must have a unique name. In this example, func1
and func2 are the names.

3. the argument types enclosed by parentheses. Usually, we also give names to the arguments.
In this example, each function needs an integer as the argument and we give a for the name.
If there are two or more arguments, they are separated by commas. If the function needs no
argument, put void inside the parentheses.

ECE264. updated on Thursday 3rd January, 2013 15 Please send corrections, comments, and
questions to yunglu@purdue.edu

A semicolon is added after the parentheses. This means that it is a function declaration.

If we remove the semicolon and add open and close brackets {. . . }, we define the function. It is
also called the function’s or function’s body. .

The definitions specify what the functions actually do. Obviously, we need to define functions.
Why do we need to declare functions? Sometimes, we have to inform gcc of the existence of a
function before giving gcc the definition. By declaring a function, we tell gcc that the function
exists so that it may be called by another function, even though gcc has not seen the definition
yet. Function declaration becomes essential when we discuss programs with multiple files in
Chapter 9.

If we remove the declaration, gcc will give a warning message:

In function func1:
warning: implicit declaration of function func2

This means func1 calls func2 even though gcc does not know anything about func2 yet. It
is a warning message because gcc finds the definition later in the file.

If we also remove the definition, gcc will produce an error message:

In function func1:
warning: implicit declaration of function func2
In function ‘func1’:
undefined reference to ‘func2’

Now, let’s see the output of the program:

beginning of func1(5)
beginning of func2(10)
end of func2 (10)
end of func1 (5)

Notice the order of the output. The program enters func1 first and prints the message
beginning of func1(5). Then, func1 calls func2. The program prints the message
beginning of func2(10). The program exits func2 and returns to func1. If a function calls
another function, when the called function finishes, the program returns the the caller. The com-
piler (i.e. gcc) ensures that the program continues after the function call. Consider this example
calling a function

function(/* some arguments */);
/* <-- This is the place immediately after the call */

After the function finishes, the program continues from the point immediately after the func-
tion call. This is illustrated in Figure 1.1.

ECE264. updated on Thursday 3rd January, 2013 16 Please send corrections, comments, and
questions to yunglu@purdue.edu

void f1(int a)

{

 /* some code */

 f2(a + 5);

 /* some code */

}

1

void f2(int a)

{

 /* some code */

}

2

3

(a)

void f1(int a)

{

 /* some code */

 f2(a + 5);

 /* some code */

}

1

void f2(int a)

{

 /* some code */

 f3(a + 10);

 /* some code */

}

2 3

void f3(int a)

{

 /* some code */

} 4

5

(b)

Figure 1.1: When a function calls another function, the program executes the code in the called
function. When the called function finishes, the program returns to the caller, right below the
function call. The arrows mean the flow of the program. The numbers indicates the sequence of
execution.

You may have noticed that both func1 and func2 can have variable called a. However, you
cannot have code like this

void f1(int a)
{

int b = 6;
int b = 16;
...

}

inside the same function. If you do so, gcc will tell you

error: redefinition of b

Next chapter explains how programs use memory in computers. The knowledge will help you
understand why both func1 and func2 can have a variable called a. You will also understand
why the value of a is changed back to 5 when the program is back at func1.

ECE264. updated on Thursday 3rd January, 2013 17 Please send corrections, comments, and
questions to yunglu@purdue.edu

1.6 Practice Problems

1. Write a program that can find and report the largest number in the command line arguments.

Suppose this program is called findMax. The following shows two executions of the pro-
gram.

> ./findMax 6 4 -9 8 7 3
The largest number is 8.

> ./findMax 1 2 3 4
The largest number is 4.

2. Write a program that can determine whether the input arguments are in the ascending order.

Suppose this program is called checkOrder. The following shows two executions of the
program.

> ./checkOrder 1 2 3 4
Yes.

> ./checkOrder 6 4 -9 8 7 3
No.

ECE264. updated on Thursday 3rd January, 2013 18 Please send corrections, comments, and
questions to yunglu@purdue.edu

Chapter 2

Computer Memory (Stack)

2.1 Address and Value

Memory is an important part of computers. When you buy a computer, you usually need to spec-
ify how much memory to be installed. A typical laptop computer today has several GB memory.
G means “giga”, a billion. B means “byte”. One byte is 8 bits. One bit means enough space to
store either zero or one.

Computers’ memory is organized as address - value pairs. One analogy is the families living on
the Main Street of a town. Consider a scenario

• Family Jones lives at first Main Street.

• Family Smith lives at second Main Street.

• Family Brown lives at third Main Street.

• Family Taylor lives at fourth Main Street.

• Family Clark lives at fifth Main Street.

We can express this information in a table

Address Family
first Jones

second Smith
third Brown

fourth Taylor
fifth Clark

19

Similarly, in a computer’s memory, either zero or one is stored in each memory location, some-
thing like the following

• zero is stored at the first location.

• zero is stored at the second location.

• one is stored at the third location.

• zero is stored at the fourth location.

• one is stored at the fifth location.

We can also express this as a table

Address Value
first zero

second zero
third one

fourth zero
fifth one

For the most part of this book, we consider more than one bit. Actually, for the most part of this
book, we do not worry about the size of data because we do not need to worry about the details.

Remembering billions of locations would be quite difficult for a programmer, even though a
computer has no problem at all. A simpler way uses symbols, such as counter or sum. Compilers
(such as gcc) translate the symbols into addresses. You, as a programmer, do not need to worry
about what addresses to use. Symbols are for human; computers do not need symbols. Inside a
computer’s memory, there are only addresses and values.

Consider the following sample code

int a = 5;
double b = 6.7;
char z = ’c’;

They will be stored somewhere inside a computer’s memory, something like the following

Symbol Address Value
a 100 5
b 104 6.7
z 112 ’c’

ECE264. updated on Thursday 3rd January, 2013 20 Please send corrections, comments, and
questions to yunglu@purdue.edu

The address of b is 4 + the address of a because we assume an integer takes 4 bytes. We assume
a double-precision floating point number takes 8 bytes. Thus, z’s address is 8 + b’s address. Again,
in most cases, we don’t need to worry whether a symbol’s size is 4 or 8 or something else, as long
as each symbol has a distinct address. The addresses are not reused: two variables (a, b, and z in
this example) will always have different addresses.

2.2 Stack Memory

In computers, memory is organized into two types: stack memory and heap memory. This chapter
focuses on stack memory; Chapter 5 will explain heap memory. Stack memory follows a strict
rule: first in, last out. New data can enter the stack memory at only the top. Data can be retrieved
at only the top. By convention, we say top instead of bottom, even though the concept is the same.
When a piece of data is stored into the stack memory, we say the piece is pushed into the stack.
When a piece of data is retrieved from the stack memory, we say the piece is popped from the stack.
Figure 2.1 illustrates the two operations (push and pop) of stack memory.

ECE264. updated on Thursday 3rd January, 2013 21 Please send corrections, comments, and
questions to yunglu@purdue.edu

720

386

-15

46

945

(a) (b)

653

push

653

720

386

-15

46

945

653

720

386

-15

46

945

pop

720

386

-15

46

945

653

bottom

top

Figure 2.1: Push and pop of stack. (a) Data are pushed (stored) onto a stack. Originally, the top of
the stack stores number 720. Number 653 is pushed to the top of the stack. (b) Data are retrieved
(popped) from the stack. Push and pop can occur at only the top of the stack. This figure uses
integers as an example. A stack can store any type of data: integer, character, double, string, or
programmer-defined types as explained in Chapter 7.

2.3 Function Return Location

f3 f3
f2 f2 f2 f2

f1 f1 f1 f1 f1 f1

(a) (b)

Figure 2.2: (a) The stack changes after f1, f2, and f3 are called. Each function call pushes the
called function onto the stack. (b) When f3 finishes, it is popped from the stack and now f2 is at
the top. When f2 finishes, it is popped from the stack and f1 is at the top.

ECE264. updated on Thursday 3rd January, 2013 22 Please send corrections, comments, and
questions to yunglu@purdue.edu

void f1(int a)

{

 /* some code */

 f2(a + 5);

 /* return location */

 /* some code */

}

1

void f2(int a)

{

 /* some code */

}

2

3

(a)

void f1(int a)

{

 /* some code */

 f2(a + 5);

 /* RL 1 */

 /* some code */

}

1

void f2(int a)

{

 /* some code */

 f3(a + 10);

 /* RL 2 */

 /* some code */

}

2 3

void f3(int a)

{

 /* some code */

}
4

5

(b)

Figure 2.3: Compilers (such as gcc) mark the return location (RL) after each function call.

Why is stack memory important? Stack memory stores the order of function calls. Recall Fig-
ure 1.1 (b). Function f1 calls function f2 and f2 calls function f3. When f3 finishes, the program
continues f2, from the place just below calling f3. Figure 2.2 shows what is in the stack memory

Actually, the stack does not store the names of the functions (i.e. not f1, f2, or f3). The
stack stores the return locations (RL) after the function calls. The return locations are the locations
immediately after the function calls. Figure 2.3 redraws Figure 1.1 by adding return locations.
Return locations are added by compilers (such as gcc). As a programmer, you do not need to
do anything (actually, you cannot do anything) for creating return locations. Return locations are
stored to the call stack. In Figure 2.3(b), RL1 is pushed to the stack first before f2 starts. When f2
calls f3, RL2 is pushed to the stack before f3. When f3 finished, RL2 is popped from the stack
and the program continues from RL2. When f2 finishes, RL1 is popped from the stack and the
program continues from there.

Why are the return locations stored, not the functions’ names? The reason is quite simple: a
function may call another function multiple times. Consider this example:

void f1(int a)
{

/* some code */
f2(a + 5); /* first call */

ECE264. updated on Thursday 3rd January, 2013 23 Please send corrections, comments, and
questions to yunglu@purdue.edu

/* return location 1 */
f2(a + 10); /* second call */
/* return location 2 */
/* some more code */

}

Function f2 is called in two different locations inside f1. After the first call, the program con-
tinues from return location 1. After the second call, the program continues from return location 2.
In a program, every statement has a location. Right now, we need to worry about the statement
after a function call. This is the location to continue the program after the function finishes. Sec-
tion 12.1 uses the gdb debugger to show the locations of different statements.

ECE264. updated on Thursday 3rd January, 2013 24 Please send corrections, comments, and
questions to yunglu@purdue.edu

2.4 Call Stack

The place where the return locations are stored is the call stack. The call stack stores more than
return locations. The call stack also stores function arguments and local variables. In Figure 2.3, each
function has an argument called a. The arguments are also stored in the call stack.

void f1(int a)
{

int b = 4;
char s = ’m’;
/* some code */

}
void f2(int a)
{
/* some code */
f1(5);
/* return location */
/* some more code */

}

When f1 is called by f2, the return location is pushed to the call stack:

Symbol Address Value
- 100 return location

Your program cannot directly access the return location, so there is no symbol associated with
the return location. The address is given by the operating system. For simplicity, we use 100 here.
Then, argument a is pushed to the call stack and the value 5 is assigned to a.

Symbol Address Value
a 101 5
- 100 return location

Next, local variable b is pushed to the call stack and its value is 4.

Symbol Address Value
b 102 4
a 101 5
- 100 return location

ECE264. updated on Thursday 3rd January, 2013 25 Please send corrections, comments, and
questions to yunglu@purdue.edu

Last, local variable s is pushed to the call stack and its value is ’m’;

Symbol Address Value
s 103 ’m’
b 102 4
a 101 5
- 100 return location

This is called the frame of function f1. A frame includes (1) the return location after the function
finishes, (2) arguments, and (3) local variables. When f1 finishes and the program continues
execution in f2, the whole frame is popped from the call stack. Operating systems ensure that
addresses are not shared. It is impossible to have a and b occupying the same memory address.

Now, let’s consider a more complex situation with three functions.

void f1(int a)
{

int b = 4;
char s = ’m’;
/* some code */

}

void f2(int a)
{
int b = 19;
int s = -36;
/* some code */
f1(a + 5);
/* return location 2 */
/* some more code */

}

void f3(int a)
{

/* some code */
f2(5);
/* return location 1 */
/* some more code */

}

When f3 calls f2(5), return location 1 is pushed to the call stack.

ECE264. updated on Thursday 3rd January, 2013 26 Please send corrections, comments, and
questions to yunglu@purdue.edu

Symbol Address Value
- 100 return location 1

Next, f2’s argument a is pushed to the stack and its value is 5.

Symbol Address Value
a 101 5
- 100 return location 1

The local variables of f2 are pushed to the stack.

Symbol Address Value
s 103 -36
b 102 19
a 101 5
- 100 return location 1

Here comes the interesting part: f2 calls f1. What happens to the call stack? We just follow
the same procedure: push the return location, the argument (or arguments if there are multiple),
and the local variables.

Symbol Address Value
s 107 ’m’
b 106 4
a 105 10
- 104 return location 2
s 103 -36
b 102 19
a 101 5
- 100 return location 1

Please remember that the call stack is divided into frames; each frame corresponds to one
function call.

Frame Symbol Address Value

f1

s 107 ’m’
b 106 4
a 105 10
- 104 return location 2

f2

s 103 -36
b 102 19
a 101 5
- 100 return location 1

ECE264. updated on Thursday 3rd January, 2013 27 Please send corrections, comments, and
questions to yunglu@purdue.edu

When f1 finishes, its frame is popped from the stack. When f2 finishes, its frame is also
popped from the stack. You probably want to ask whether there is a frame for f3. The answer is
yes. The frame for f3 is constructed using the same procedure when f3 is called. Every function
has its own frame. The frame for the main function should be at the very bottom of the call stack.

A function’s frame is pushed onto the call stack when the function is called during execution.
If the function is not called, its frame is not on the call stack. Consider this example

void f1(int a)
{

if (a == 0)
{

f2(a);
}
else
{

f3(a);
}

}
int main(int argc, char * argv[])
{

f1(1);
return EXIT_SUCCESS;

}

The main function calls f1 with a = 1. Because of the condition, f2 is not called and the call
stack never has f2’s frame.

2.5 Scope

After understanding the call stack and the frame of each function, we can answer the question on
page 17: We cannot use

int b = 6;
int b = 16;

inside the same function. Otherwise, gcc says,

error: redefinition of b

ECE264. updated on Thursday 3rd January, 2013 28 Please send corrections, comments, and
questions to yunglu@purdue.edu

Why can we use the same variable name a, b, or s in multiple functions without problems?
The answer is that each frame is a separate scope. We can use the same symbols in different scopes.
In a C program, each function has to follow this rule:

A function can read or write variables and arguments only inside its own
frame. Within each frame, a symbol can appear only once.

In the call stack shown on page 27, for f1, the symbol a refers to the symbol at address 105.
The function cannot read or modify the symbol a at address 101. Similarly, for f1, the symbol b
refers to address 106. If we change f1 to

int f1(int a)
{

int b = 29;
char s = ’u’;
/* some code */

}

The value stored at address 106 is changed to 29; the value stored at address 102 is unchanged.

Frame Symbol Address Value

f1

s 107 ’u’
b 106 29
a 105 10
- 104 return location 2

f2

s 103 -36
b 102 19
a 101 5
- 100 return location 1

Consider another example:

/* file: fab.c
purpose: changing the arguments would not change the values
in the caller

*/
#include <stdio.h>
#include <stdlib.h>
void f1(int a, int b)
{

ECE264. updated on Thursday 3rd January, 2013 29 Please send corrections, comments, and
questions to yunglu@purdue.edu

printf("beginning of f1(%d,%d)\n", a, b);
a = 5;
b = -5;
printf("end of f1(%d,%d)\n", a, b);

}

void f2(void)
{

int a = 10;
int b = -10;
printf("beginning of f2(%d, %d)\n", a, b);
f1(a, b);
/* return location 2 */
printf("end of f2(%d, %d)\n", a, b);

}

int main(int argc, char * argv[])
{

f2();
/* return location 1 */
return EXIT_SUCCESS;

}

The output of this program is

beginning of f2(10, -10)
beginning of f1(10,-10)
end of f1(5,-5)
end of f2(10, -10)

Please notice that a and b are changed inside f1. However, when f1 finishes, the values of a
and b are unchanged. Let’s use the call stack to understand what has happened.

When main calls f2, there is no argument. There are two local variables a and b; f2’s fame is
shown below.

Frame Symbol Address Value

f2
b 102 -10
a 101 10
- 100 return location 1

Right at the beginning of f1, the call stack contains two frames. The values of a and b are 10
and -10 because the caller (i.e. f2) assigns 10 and -10 to a and b.

ECE264. updated on Thursday 3rd January, 2013 30 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

f1
b 105 -10
a 104 10
- 103 return location 2

f2
b 102 -10
a 101 10
- 100 return location 1

Inside f1, a and b are changed to 5 and -5. The changes are reflected in the call stack.

Frame Symbol Address Value

f1
b 105 -5
a 104 5
- 103 return location 2

f2
b 102 -10
a 101 10
- 100 return location 1

When f1 finishes, its frame is popped and the call stack has only f2’s frame.

Frame Symbol Address Value

f2
b 102 -10
a 101 10
- 100 return location 1

The values of a and b are 10 and -10, not affected by the changes inside f1.

2.6 Return Value

If a function has no return value, void is added in front of the function. Otherwise, the return
type is added. The following example contains three functions (including main) returning int
and char.

/* file: freturn.c
purpose: functions with return values

*/
#include <stdio.h>
#include <stdlib.h>
int f1(int a, int b)
{

ECE264. updated on Thursday 3rd January, 2013 31 Please send corrections, comments, and
questions to yunglu@purdue.edu

int c;
c = a + b;
return c;

}

char f2(void)
{

int a = 10;
int b = -10;
int d;
d = f1(a, b);
/* return location 2 */
if (d == 0)

{
return ’y’;

}
return ’n’;

}

int main(int argc, char * argv[])
{

char s;
s = f2();
/* return location 1 */
printf("s = %c\n", s);
return EXIT_SUCCESS;

}

How does gcc handle return values? It pushes the address of the variable to the frame so
that the returned value is is assigned to the correct address. Earlier on page 26, we said a frame
includes (1) the return location after the function finishes, (2) arguments, and (3) local variables.
Now, we need to add the fourth: the address for storing the return value.

Shown below is the call stack after f2 is called, before f1 is called. The value returned by f2 is
stored in s; thus, f2’s frame includes the address of s. This address is stored just above the return
location.

Frame Symbol Address Value

f2

d 105 ?
b 104 -10
a 103 10
- 102 value address 100
- 101 return location 1

main s 100 ?

ECE264. updated on Thursday 3rd January, 2013 32 Please send corrections, comments, and
questions to yunglu@purdue.edu

The frame of f1 is pushed to the call stack when the program starts executing f1, just before

c = a + b;

Frame Symbol Address Value

f1

c 110 ?
b 109 -10
a 108 10
- 107 value address 105
- 106 return location 2

f2

d 105 ?
b 104 -10
a 103 10
- 102 value address 100
- 101 return location 1

main s 100 ?

The value returned from f1 is stored in d and its address, 105, is stored in f1’s frame.

The values of c in f1, d in f2, and s in main are unknown right now, because they have
not been assigned yet (waiting for the called functions). Therefore, we use “?” for the values.
You cannot assume that uninitialized variables are zero. If we do not assign values, the values can be
anything.

Next, inside f1, c is the sum of a and b. Since a is 10 and b is -10, their sum is 0 and this value
is assigned to c.

Frame Symbol Address Value

f1

c 110 0
b 109 -10
a 108 10
- 107 value address 105
- 106 return location 2

f2

d 105 ?
b 104 -10
a 103 10
- 102 value address 100
- 101 return location 1

main s 100 ?

Function f1 returns c’s value and this value is stored at address 105, i.e. d’s address. Just
before popping f1’s frame, d’s value has been changed to 0.

ECE264. updated on Thursday 3rd January, 2013 33 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

f1

c 110 0
b 109 -10
a 108 10
- 107 value address 105
- 106 return location 2

f2

d 105 0
b 104 -10
a 103 10
- 102 value address 100
- 101 return location 1

main s 100 ?

Afterwards, f1’s frame is popped.

Frame Symbol Address Value

f2

d 105 0
b 104 -10
a 103 10
- 102 value address 100
- 101 return location 1

main s 100 ?

Since d is 0, f2 will return ’y’. This return value is copied to the address of 100, i.e. s inside
main.

Frame Symbol Address Value

f2

d 105 0
b 104 -10
a 103 10
- 102 value address 100
- 101 return location 1

main s 100 ’y’

The frame of f2 is popped and the call stack is shown below.

Frame Symbol Address Value
main s 100 ’y’

ECE264. updated on Thursday 3rd January, 2013 34 Please send corrections, comments, and
questions to yunglu@purdue.edu

The procedure seems complex. Fortunately, gcc takes care of copying values to arguments
when calling functions, and copying return values when functions finish. We have been using
100, 101, . . . for the addresses in these examples. As mentioned earlier, the addresses of the call
stack are determined by operating systems and we have no control. Thus, the addresses are for
explanation purposes only and do not reflect the actual addresses in any specific computer.

Section 1.3 mentioned that a C program may call a function and discard the returned value.
For example,

int f(int x)
{

return (x + 5);
}

int g(int y)
{

f(y); // do not store the returned value
}

Even though f returns an integer, the value is not stored anywhere in the caller g. No value
address is pushed to the call stack.

2.7 Practice Problems

1. Draw the call stack of this program just before

int c = 3;

#include <stdio.h>
#include <stdlib.h>
void f(int i, int j)
{
int a = i + j;
int b = i - j;
int c = 3;

}
int main(int argc, char * argv[])
{

f(6, 9);
return EXIT_SUCCESS;

}

ECE264. updated on Thursday 3rd January, 2013 35 Please send corrections, comments, and
questions to yunglu@purdue.edu

2. Draw the call stack of this program when the program reaches Label 1, Label 2, and Label 3.

#include <stdio.h>
#include <stdlib.h>
int f(int i, int j)
{
int a, b, c;
a = i + j;
b = i - j;
c = 3 + b;
/* Label 2 */
return c;

}
int main(int argc, char * argv[])
{

int a = 6;
int b = 9;
int c = 264;
/* Label 1 */
c = f(a, b);
/* Label 3 */
return EXIT_SUCCESS;

}

ECE264. updated on Thursday 3rd January, 2013 36 Please send corrections, comments, and
questions to yunglu@purdue.edu

Chapter 3

Recursion

Recursion uses the concept of divide and conquer: divide a complex problem into smaller problems
and solve (conquer) the smaller problems. Recursion is a way to solve problems by following
these steps:

1. identify the parameters of a problem.

2. express the solution based on the parameters.

3. determine the simple cases when the solutions are “obvious”.

4. derive the relationships between complex cases and simpler cases.

Let’s consider three examples.

3.1 Examples

3.1.1 Select Balls

Suppose you have many (unlimited) red and blue balls. You want to select n balls but red balls
cannot be adjacent. How many ways can you select the balls?

Step 1: For this problem, the number of balls, n, is the parameter.

Step 2: Let f(n) be the answer: how many ways we can select the balls.

Step 3: If only one ball is selected, we have two choices: red or blue. Thus, f(1) is 2. If only
two balls are selected, there are three options: (i) Red, Blue, (ii) Blue, Red, and (iii) Blue, Blue.
Therefore, f(2) is 3.

37

Step 4: If there are n balls (n > 2), the first ball can be red or blue. If the first ball is blue,
it cannot be red, and vice versa. Therefore, there are exactly two choices for the first ball. We
consider the two different scenarios: (i) If the first ball is blue, the remaining n − 1 balls must
follow the same rule: no red balls are adjacent. There are f(n − 1) options. (ii) If the first ball is
red, the second ball must be blue. The remaining n− 2 balls must follow the same rule and there
are f(n− 2) options. Thus, we can express f(n) as the sum f(n− 1) + f(n− 2).

? ? ?
)(nf

)1(nf

)2(nf

Figure 3.1: To decide f(n), we consider the options for the first ball. If the first ball is blue, the
remaining n− 1 ball have f(n− 1) options. If the first ball is red, the second ball must be blue and
remaining n− 2 ball have f(n− 2) options.

f(n) =


2 if n is 1

3 if n is 2

f(n− 1) + f(n− 2) if n > 2

(3.1)

3.1.2 One-Way Street

Imagine a city in which the streets are either east-west bound or north-south bound shown as
the grids in Figure 3.2. The city has severe traffic jam during rush hours so the city government
considers to adopt a rule: during rush hours, cars can move only east bound or north bound1.
If you have the locations of the origin and the destination, how many ways can you reach the
destination by driving?

Figure 3.2 marks three pairs of origins and destinations: A→ B, C→D, and E→ F. How many
turning options does a driver have going from one origin to the corresponding destination? For
the first two pairs A→ B and C→ D, the driver has only one option. This is shown in Figure 3.3
(a) and (b). In contrast, there are some options for E→ F. At E, the driver can go east bound first
or north bound first, as indicated by the two arrows in Figure 3.3 (c). The question is the number
of options.

1All right, this example does not make sense in reality but this is a nice example for recursion.

ECE264. updated on Thursday 3rd January, 2013 38 Please send corrections, comments, and
questions to yunglu@purdue.edu

A B

C

D

E

F

Figure 3.2: The city’s streets are either east-west bound or north-south bound. A car can move
only east bound or north bound.

A B

C

D

E

F

(a)

A B

C

D

E

F

(b)

A B

C

D

E

F

(c)

Figure 3.3: (a) A driver cannot turn anywhere from A to B. (b) A driver cannot turn anywhere
from C to D. (c) There are some turning options from E to F. At E, the driver can go north bound
first or east bound first, as indicated by the two arrows.

To answer this question, we have to first identify the parameters. Suppose E is at the the
intersection of (x1, y1) and F is at the intersection of (x2, y2). The distance between them can be
expressed as (∆x,∆y) = (x2− x1, y2− y1). This is the first step.

Step 2: Let f(∆x,∆y) express the number of solutions.

Step 3: If ∆x < 0, the destination is at the west side of the origin. Thus, there is no solution.
Also, there is no solution if ∆y < 0. ∆x = ∆y = 0 is a special case. It means that the destination
is the same as the origin. We can say that there is no solution or there is one solution— do not do
anything. Either definition makes sense but we choose the latter definition. If ∆x > 0 and ∆y = 0
(the case A→ B), there is one solution. If ∆x = 0 and ∆y > 0 (the case C→ D), there is also one
solution. These are the simple cases whose answers can be found easily.

f(∆x,∆y) =


0 if ∆x < 0 or ∆y < 0

1 if ∆x = 0 and ∆y ≥ 0

1 if ∆x ≥ 0 and ∆y = 0

(3.2)

Step 4: When ∆x > 0 and ∆y > 0 (the case E→ F), the driver has options at the origin (i.e. E):
going north first or going east first. If the driver goes north first, the new origin is at (x1, y1 + 1).

ECE264. updated on Thursday 3rd January, 2013 39 Please send corrections, comments, and
questions to yunglu@purdue.edu

There are f(∆x,∆y − 1) options left. If the driver goes east first, the new origin is at (x1 + 1, y1).
There are f(∆x − 1,∆y) options left. These are the only two possible options at E and they are
exclusive. Therefore, we can express f(∆x,∆y) = f(∆x,∆y − 1) + f(∆x − 1,∆y) if ∆x > 0 and
∆y > 0.

f(∆x,∆y) =


0 if ∆x < 0 or ∆y < 0

1 if ∆x = 0 and ∆y ≥ 0

1 if ∆x ≥ 0 and ∆y = 0

f(∆x,∆y − 1) + f(∆x− 1,∆y) if ∆x > 0 and ∆y > 0

(3.3)

3.1.3 Integer Partition

Integer partition means breaking a positive integer into the sum of some positive integers. For
example, 5 can be broken into the sum of 1 + 2 + 2 or 2 + 3. Two partitions are different if they
use different sets of integers. For example, the first partition uses 1 but not 3. The second partition
uses 3 but not 1. These two partitions are different. We also consider the order of the integers
used: 1 + 2 + 2 and 2 + 1 + 2 are different because 1 appears in different positions. The question is
the number of different partitions for a positive integer n.

Step 1: The number n is naturally the parameter for the problem.

Step 2: Let f(n) be the number of different partitions for integer n.

Step 3: When n is 1, there is only one way to partition the number: itself. When n is 2, there
are two ways: 1 + 1 and 2. Thus, f(1) = 1 and f(2) = 2.

Step 4: When n is larger than 2, we consider the possible options for the first number.

Total First Number Remaining Value
n 1 n− 1

2 n− 2
3 n− 3

. . .
n− 2 2
n− 1 1
n 0

These are all possible cases and they are exclusive. If the first number is 1, the first number
cannot be 2.

If the first number is 1, the remaining value is n − 1. How many ways can this value be
partitioned? By definition, it is f(n− 1). If the first number is 2, the remaining value is n− 2. How
many ways can this value be partitioned? By definition, it is f(n− 2).

ECE264. updated on Thursday 3rd January, 2013 40 Please send corrections, comments, and
questions to yunglu@purdue.edu

The value of f(n) is the sum of all different cases when the first number is 1, or 2, or 3, . . . , or
n− 1, or n itself. Now, we can express f(n) as

f(n) =


1 if n is 1

f(n− 1) + f(n− 2) + . . . f(1) + 1 = 1 +
n−1∑
i=1

f(i) if n > 1
(3.4)

3.1.4 Tower of Hanoi

This is a popular example for explaining recursion. Some disks of different sizes are stacked on
one pole. The disks are arranged so that smaller disks are above larger disks. The problem is to
move the disks to another pole. Only one disk can be moved each time. At any moment smaller
disks are always above larger disks. A third pole is used to hold some disks when necessary.
Figure 3.4 illustrates the problem. If there are n disks, how many steps are needed?

A B C

(a)
⇒

A B C

(b)

Figure 3.4: Tower of Hanoi. (a) Some disks are arranged along pole A and the goal is to move all
disks to pole B, as shown in (b). A larger disk can never be placed above a smaller disk. A third
pole, C, is used when necessary.

Let’s first consider moving only one disk from A to B. This is the simplest case and we can
move that disk directly from A to B as shown in Figure 3.5.

A B C

(a)
⇒

A B C

(b)

Figure 3.5: Moving one disk from A to B requires only one step.

Moving two disks requires more work. We cannot move the smaller disk (yellow disk) to B
and then move the larger disk (blue disk) to B. Doing so would place the larger disk above the
smaller disk. This violates the rule. Instead, we have to move the smaller disk “somewhere else”,

ECE264. updated on Thursday 3rd January, 2013 41 Please send corrections, comments, and
questions to yunglu@purdue.edu

i.e. C, before moving the larger disk to B. Then, we move the larger disk from A to B and move
the smaller disk from C to B. The steps are illustrated in Figure 3.6.

As illustrated in Figure 3.6, when there are two disks, the problem can be solved in three steps.
Can you think of a solution that requires fewer steps for two disks?

A B C

⇒

A B C

⇓
A B C

⇐

A B C

Figure 3.6: Moving two disks from A to B requires three steps.

If you are not quite sure how to solve the problem yet, let’s try one more example using three
disks. Figure 3.7 illustrates how to move three disks. Totally seven steps are needed. If you study
the figure carefully, you can find that the first three steps and the last three steps are somewhat
similar. The first three steps move the top two disks from A to C. The last three steps move the top
two disks from C to B. Between these steps is the fourth step and it moves the largest disk from A
to B.

ECE264. updated on Thursday 3rd January, 2013 42 Please send corrections, comments, and
questions to yunglu@purdue.edu

A B C

⇒

A B C

⇓
A B C

⇐

A B C

⇓
A B C

⇒

A B C

⇓
A B C

⇐

A B C

Figure 3.7: Moving two disks from A to B requires three steps.

Can you develop a general strategy for n disks? If there is only one disk (i.e. n is one), the
problem can be solved easily. Otherwise, our solution is divided into three parts: (i) move the first
n− 1 disks from A to C, (ii) move the largest disk from A to B, and (iii) move the first n− 1 disks
from C to B. How many steps are needed for moving n disks?

Step 1: The number n is naturally the parameter for the problem.

Step 2: Let f(n) be the answer: how many steps are needed to move n disks from A to B.

Step 3: If n is one, only one step is sufficient; thus, f(1) is 1.

ECE264. updated on Thursday 3rd January, 2013 43 Please send corrections, comments, and
questions to yunglu@purdue.edu

Step 4: When n is greater than one, the problem can be divided into three parts. Part (i) needs
to move n − 1 disks so it needs f(n − 1) stesp. Part (ii) needs to move only one disk so it needs
one step. Part (iii) needs to move n − 1 disks so it needs f(n − 1) steps. Thus, we can obtain the
following formula:

f(n) =

{
1 if n is 1

f(n− 1) + 1 + f(n− 1) = 2f(n− 1) + 1 if n ≥ 2
(3.5)

3.2 C Implementation

This section shows how to convert the mathematical formulas to C programs. At the beginning
of this chapter, we said there are four steps for solving a problem using recursion. The steps are
translated into the following C code in a recursive function.

Step 1: identify the parameters of a problem⇒ the arguments of a function

Steps 2 and 3: express the solution based on the parameters and determine the simple cases
when the solutions are “obvious”⇒ each simple case is detected by a condition, i.e. an if state-
ment. If one condition is true, the problem is solved directly.

Step 4: derive the relationships between complex cases and simpler cases ⇒ If none of the
if conditions is true, this is a complex case. Call the function itself with a (or several) modified
argument (or arguments).

A recursive function has the following structure:

return_type func(arguments)
{

if (this is a simple case) /* by checking the arguments */
{

solve the problem
}
else
{

call func by simplifying the arguments
}

}

The if condition (or conditions) is the terminating condition (or conditions) of the recursive
function. When the condition is true, the problem is simple enough and recursive calls are unnec-
essary.

ECE264. updated on Thursday 3rd January, 2013 44 Please send corrections, comments, and
questions to yunglu@purdue.edu

3.2.1 Select Balls

/* file: balls.c
purpose: implement the recursive relation for selecting balls

*/
#include <stdio.h>
#include <stdlib.h>
int f(int m)
/* use m instead of n so that we can distinguish m in f and n in

main */
{

int a, b;
if (m <= 0)

{
printf("Invalid Number %d. It must be positive.\n", m);
return -1;

}
if (m == 1)

{
/* two options when only one ball is selected */
return 2;

}
if (m == 2)

{
/* three options when only two balls are selected */
return 3;

}
a = f(m - 1);
/* return location 2 */
b = f(m - 2);
/* return location 3 */
return (a + b);

}

int main(int argc, char * argv[])
{

int c;
int n;
if (argc < 2)

{
printf("need 1 integer.\n");
return EXIT_FAILURE;

}
n = (int) strtol(argv[1], NULL, 10);
c = f(n);
/* return location 1 */

ECE264. updated on Thursday 3rd January, 2013 45 Please send corrections, comments, and
questions to yunglu@purdue.edu

printf("f(%d) = %d.\n", n, c);
return EXIT_SUCCESS;

}

Executing the program with different arguments can produce the following results:

n f(n)
1 2
2 3
3 5
4 8
5 13
6 21

Let’s examine the call stack when n (in main) is 4. Assume that there are two arguments and
argv[1] is “4”.

Frame Symbol Address Value

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

‡ argv stores the addresses of the arguments.
We do not need to worry about it for now.

Calling f will change the call stack as follows

Frame Symbol Address Value

f

b 108 ?
a 107 ?
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

Since m is not negative, 0, 1, or 2, the program will call f(m − 1) and assign the result in a.
Recursive call follows the same procedure pushing return location, value address, arguments,
and local variables onto the call stack.

ECE264. updated on Thursday 3rd January, 2013 46 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

f

b 113 ?
a 112 ?
m 111 3
- 110 value address 107
- 109 return location 2

f

b 108 ?
a 107 ?
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

The value of m is still not negative, 0, 1, or 2. Thus, the program calls f(m− 1) again.

Frame Symbol Address Value

f

b 118 ?
a 117 ?
m 116 2
- 115 value address 112
- 114 return location 2

f

b 113 ?
a 112 ?
m 111 3
- 110 value address 107
- 109 return location 2

f

b 108 ?
a 107 ?
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

The value of m is 2 so the function returns 3. This return value is written to the value address
112.

ECE264. updated on Thursday 3rd January, 2013 47 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

f

b 118 ?
a 117 ?
m 116 2
- 115 value address 112
- 114 return location 2

f

b 113 ?
a 112 3
m 111 3
- 110 value address 107
- 109 return location 2

f

b 108 ?
a 107 ?
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

Then, the top frame is popped.

Frame Symbol Address Value

f

b 113 ?
a 112 3
m 111 3
- 110 value address 107
- 109 return location 2

f

b 108 ?
a 107 ?
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

Next, the program calls f(m− 2). The return value is stored in b.

ECE264. updated on Thursday 3rd January, 2013 48 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

f

b 118 ?
a 117 ?
m 116 1
- 115 value address 113
- 114 return location 3

f

b 113 ?
a 112 3
m 111 3
- 110 value address 107
- 109 return location 2

f

b 108 ?
a 107 ?
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

This time the function returns 2 because m is 1. The return value is written to the address 113.

Frame Symbol Address Value

f

b 118 ?
a 117 ?
m 116 1
- 115 value address 113
- 114 return location 3

f

b 113 2
a 112 3
m 111 3
- 110 value address 107
- 109 return location 2

f

b 108 ?
a 107 ?
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

ECE264. updated on Thursday 3rd January, 2013 49 Please send corrections, comments, and
questions to yunglu@purdue.edu

The top frame is popped.

Frame Symbol Address Value

f

b 113 2
a 112 3
m 111 3
- 110 value address 107
- 109 return location 2

f

b 108 ?
a 107 ?
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

The values of a and b are available so the function returns their sum and this value is stored at
address 107.

Frame Symbol Address Value

f

b 113 2
a 112 3
m 111 3
- 110 value address 107
- 109 return location 2

f

b 108 ?
a 107 5
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

The top frame is popped.

ECE264. updated on Thursday 3rd January, 2013 50 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

f

b 108 ?
a 107 5
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

The program calls f(m− 2) and stores the result in b.

Frame Symbol Address Value

f

b 113 -
a 112 -
m 111 2
- 110 value address 108
- 109 return location 3

f

b 108 ?
a 107 5
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

The function returns 3 and this value is written to address 108.

ECE264. updated on Thursday 3rd January, 2013 51 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

f

b 113 -
a 112 -
m 111 2
- 110 value address 108
- 109 return location 3

f

b 108 3
a 107 5
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

The top frame is popped.

Frame Symbol Address Value

f

b 108 3
a 107 5
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 ?

argv 101 ‡
argc 100 2

The function adds the values of a and b and writes the result to address 102.

Frame Symbol Address Value

f

b 108 3
a 107 5
m 106 4
- 105 value address 102
- 104 return location 1

main

n 103 4
c 102 8

argv 101 ‡
argc 100 2

ECE264. updated on Thursday 3rd January, 2013 52 Please send corrections, comments, and
questions to yunglu@purdue.edu

The top frame is popped.

Frame Symbol Address Value

main

n 103 4
c 102 8

argv 101 ‡
argc 100 2

Finally, we know the value of f(4) is 8.

You may think this is tedious. Fortunately, pushing, popping, determining value addresses
and return locations are all handled by the compilers. As programmers, we need to understand
what happens.

3.2.2 One-Way Street

/* file: streets.c
purpose: implement the recursive relation for calculating
the number of options in a city where cars can move only
north bound or east bound

*/
#include <stdio.h>
#include <stdlib.h>
int f(int dx, int dy)
/* Do not need to worry about dx < 0 or dy < 0

This is already handled at main */
{

int a, b;
if ((dx == 0) || (dy == 0))

{
return 1;

}
a = f(dx - 1, dy);
/* return location 2 */
b = f(dx, dy - 1);
/* return location 3 */
return (a + b);

}

int main(int argc, char * argv[])
{

int deltax, deltay;
int c;

ECE264. updated on Thursday 3rd January, 2013 53 Please send corrections, comments, and
questions to yunglu@purdue.edu

if (argc < 3)
{

printf("need 2 positive integers.\n");
return EXIT_FAILURE;

}
deltax = (int) strtol(argv[1], NULL, 10);
deltay = (int) strtol(argv[2], NULL, 10);
if ((deltax < 0) || (deltay < 0))

{
printf("need 2 positive integers.\n");
return EXIT_FAILURE;

}
c = f(deltax, deltay);
/* return location 1 */
printf("f(%d, %d) = %d.\n", deltax, deltay, c);
return EXIT_SUCCESS;

}

You should study how the call stack changes for some inputs, for example (∆x,∆y) = (2, 3).

In this program, we use local variables to store the values returned from recursive calls:

a = f(dx - 1, dy);
/* return location 2 */
b = f(dx, dy - 1);
/* return location 3 */
return (a + b);

Actually, we don’t need the local variables. Instead, we can write the following

return f(dx - 1, dy) + f(dx, dy - 1);

The program will do exactly the same things. If we do not use local variables, the compiler
will create temporary variables for us. Using local variables makes explanation easier because we
can pinpoint the return values’ addresses.

3.2.3 Integer Partition

Implementing Formula (3.4) in C is shown below:

sum = 0;
for (i = 1; i < n; i ++)

ECE264. updated on Thursday 3rd January, 2013 54 Please send corrections, comments, and
questions to yunglu@purdue.edu

{
/* the first value is i */
/* f(n - i) ways for the remaining value n - i */
sum += f(n - i);

}
sum ++; /* the first value is n and the remaining is zero */

Notice the nearly one-to-one mapping from the mathematical expression to the C code. The
complete program is shown below.

/* file: partition.c
purpose: implement the recursive relation for calculating
the number of partitions for a positive integer

*/
#include <stdio.h>
#include <stdlib.h>
int f(int n)
{

int i;
int sum = 0;
if (n == 1)

{
return 1;

}
for (i = 1; i < n; i ++)

{
sum += f(n - i);

}
sum ++;
return sum;

}

int main(int argc, char * argv[])
{

int n;
if (argc < 2)

{
printf("need one positive integer.\n");
return EXIT_FAILURE;

}
n = (int) strtol(argv[1], NULL, 10);
if (n <= 0)

{
printf("need one positive integer.\n");
return EXIT_FAILURE;

}

ECE264. updated on Thursday 3rd January, 2013 55 Please send corrections, comments, and
questions to yunglu@purdue.edu

printf("f(%d) = %d.\n", n, f(n));
return EXIT_SUCCESS;

}

Executing the program with different arguments can produce the following results:

n f(n)
1 1
2 2
3 4
4 8
5 16
6 32

You may notice a pattern: f(n) = 2n−1. This observation is actually correct for any positive
integer n. You can prove this using mathematical induction. Another way to prove it is shown below

f(n) = f(n− 1) + f(n− 2) + . . . f(1) + 1

f(n+ 1) = f(n) + f(n− 1) + f(n− 2) + . . . f(1) + 1
= f(n) + [f(n− 1) + f(n− 2) + . . . f(1) + 1]
= f(n) + f(n) = 2f(n).

(3.6)

The following program prints the parititions

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void printPartition(int * part, int length)
{

int ind;
for (ind = 0; ind < length - 1; ind ++)

{
printf("%d + ", part[ind]);

}
printf("%d\n", part[length - 1]);

}

void partition(int * part, int ind, int left)
{

int val;
if (left == 0)

{

ECE264. updated on Thursday 3rd January, 2013 56 Please send corrections, comments, and
questions to yunglu@purdue.edu

printPartition(part, ind);
return;

}
for (val = 1; val <= left; val ++)

{
part[ind] = val;
partition(part, ind + 1, left - val);

}
}

int main(int argc, char * argv[])
{

if (argc != 2) {
printf("usage: q2 <number>\n");
return EXIT_FAILURE;

}
int n = (int) strtol(argv[1], NULL, 10);
if (n <= 0) {

printf("must be a positive number\n");
return EXIT_FAILURE;

}
int * arr;
arr = malloc(sizeof(int) * n);
partition(arr, 0, n);
free (arr);
return EXIT_SUCCESS;

}

3.2.4 Tower of Hanoi

By now, implementing the formula should be straightforward for you. The program is shown
below.

/* file: hanoi1.c
purpose: calculate the number of steps needed to move n disks

*/
#include <stdio.h>
#include <stdlib.h>
int f(int n)
{

if (n == 1)
{

return 1;
}

return 2 * f(n - 1) + 1;

ECE264. updated on Thursday 3rd January, 2013 57 Please send corrections, comments, and
questions to yunglu@purdue.edu

}

int main(int argc, char * argv[])
{

int n;
if (argc < 2)

{
printf("need one positive integer.\n");
return EXIT_FAILURE;

}
n = (int) strtol(argv[1], NULL, 10);
if (n <= 0)

{
printf("need one positive integer.\n");
return EXIT_FAILURE;

}
printf("f(%d) = %d.\n", n, f(n));
return EXIT_SUCCESS;

}

A more interesting program is to print which disk is moved in each step. We create a function
called move. This function has four arguments: the number of disks to move, the source, the
destination, and the additional poles. We will follow the procedure on page 43: move the top n−1
disk to the additional pole (i.e. C), move the nth disk from A to B, and then move the the top n− 1
disk from C to B.

/* file: hanoi2.c
purpose: print the steps moving n disks

*/
#include <stdio.h>
#include <stdlib.h>
void move(int disk, char src, char dest, char additional)
{

if (disk == 1)
{

printf("move disk 1 from %c to %c\n", src, dest);
return;

}
move(disk - 1, src, additional, dest);
printf("move disk %d from %c to %c\n", disk, src, dest);
move(disk - 1, additional, dest, src);

}

int main(int argc, char * argv[])
{

int n;

ECE264. updated on Thursday 3rd January, 2013 58 Please send corrections, comments, and
questions to yunglu@purdue.edu

if (argc < 2)
{

printf("need one positive integer.\n");
return EXIT_FAILURE;

}
n = (int) strtol(argv[1], NULL, 10);
if (n <= 0)

{
printf("need one positive integer.\n");
return EXIT_FAILURE;

}
move(n, ’A’, ’B’, ’C’);
return EXIT_SUCCESS;

}

When the input is 3, the program’s output is

move disk 1 from A to B
move disk 2 from A to C
move disk 1 from B to C
move disk 3 from A to B
move disk 1 from C to A
move disk 2 from C to B
move disk 1 from A to B

You can verify whether this ouput matches the steps in Figure 3.7.

3.2.5 Fibonacci Numbers

This is another popular example for teaching recusion. The numbers are defined as follows

f(n) =


1 if n is 1

2 if n is 2

f(n− 1) + f(n− 2) if n > 2.

(3.7)

The following table lists the values of f(n) for n ≤ 10:

ECE264. updated on Thursday 3rd January, 2013 59 Please send corrections, comments, and
questions to yunglu@purdue.edu

n f(n)
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34

10 55

Table 3.1: The first ten values of Fibonacci Numbers.

This formula is similar to (3.1) on page 38; the difference is the starting values of f(1) and
f(2). Instead of repeating the same explanation, here I describe a new concept: the sequence of
computation. Figure 3.8 illustrates the concept. We want to compute f(5) and we need to compute
f(4) and f(3). To compute f(4), we need to compute f(3) and f(2).

 (a) (b) (c) (d)

f(5) = f(4) + f(3)

f(3) + f(2) f(2) + f(1)

f(2) + f(1) 1 1 1

1 1

f(5) = f(4) + f(3)

f(3) + f(2) f(2) + f(1)

f(2) + f(1) 1 1 1

f(5) = f(4) + f(3)

f(3) + f(2) f(2) + f(1)

f(5) = f(4) + f(3)

Figure 3.8: Computating f(5) requires calling f(4) and f(3). Computating f(4) requires calling
f(3) and f(2).

ECE264. updated on Thursday 3rd January, 2013 60 Please send corrections, comments, and
questions to yunglu@purdue.edu

f(n-1) 1
f(n-2) 2
f(n-3) 3
f(n-4) 5
f(n-5) 8
f(n-6) 13

Table 3.2: Coefficients for computing f(n).

Figure 3.9 redraws Figure 3.8. This looks like a “tree”. You need to use some imgaination
because the tree’s “root” is at the top and the braches go downwards. Computing each value
requires the sum of two values, until we reach the bottom, called leaves, where we can obtain the
values of f(2) and f(1) without calling the function itself again.

f(4) f(3)

f(3) f(2) f(2) f(1)

f(2) f(1)

1 1 1

1 1

f(5)

 +

 + +

 +

Figure 3.9: Redraw Figure 3.8. This looks like a binary tree: computing each value requires the
sum of two values.

Let’s divert and do a little more mathematics here. By definition, f(n) is the sum of f(n− 1) +
f(n− 2) and f(n− 1) is the sum of f(n− 2) + f(n− 3). Therefore, f(n) = f(n− 1) + f(n− 2) =
(f(n− 2) + f(n− 3)) + f(n− 2) = 2f(n− 2) + f(n− 3). We can continue this derivation for a few
more steps:

f(n) = f(n− 1) + f(n− 2)
= 2f(n− 2) + f(n− 3)
= 2(f(n− 3) + f(n− 4)) + f(n− 3) = 3f(n− 3) + 2f(n− 4)
= 3(f(n− 4) + f(n− 5)) + 2f(n− 4) = 5f(n− 4) + 3f(n− 5)
= 5(f(n− 5) + f(n− 6)) + 3f(n− 5) = 8f(n− 5) + 5f(n− 6)
= 8(f(n− 6) + f(n− 7)) + 5f(n− 6) = 13f(n− 6) + 8f(n− 7)

(3.8)

The following table lists the coefficients for computing f(n):

ECE264. updated on Thursday 3rd January, 2013 61 Please send corrections, comments, and
questions to yunglu@purdue.edu

f(n− 1) 1 f(2)
f(n− 2) 2 f(3)
f(n− 3) 3 f(4)
f(n− 4) 5 f(5)
f(n− 5) 8 f(6)
f(n− 6) 13 f(7)

Table 3.3: Coefficients for computing f(n).

If you compare this table with the values in Table 3.1, you may find that the coefficient of
f(n− k) is actually f(k + 1).

This table and Figure 3.9 express similar concepts. Figure 3.9 computes f(5) so n is 5 and f(2)
is f(n− 3). The coefficient for f(n− 3) is 3. If you count the occurrences of f(2) in Figure 3.9, you
will find that it is called three times.

3.3 Practice Problems

1. In the integer partition problem, the used numbers must be positive. We add a new re-
striction: the number must be non-decreasing. How many ways can a positive integer n be
partitioned? Write a program to find the answer. As an example, 5 can be partitioned as 1 +
2 + 2 or 2 + 3. However, 2 + 1 + 2 is invalid because 2→ 1 is decreasing.

2. Continue from the previous question. We change the restriction to be increasing. How many
ways can a positive integer n be partitioned? Write a program to find the answer. As an
example, 5 can be partitioned as 2 + 3 or 1 + 4. However, 1 + 2 + 2 is no longer invalid
because 2 is used twice.

3. What is the output of this program? Write down the answer on paper without typing it into
a computer.

/*
file: recursiveprint.c
purpose: show the values before and after recursive calls

*/
#include <stdio.h>
#include <stdlib.h>
void f(int n)
{

int iter;
if (n <= 0) { return; }
if (n == 1)

{
printf("1 0\n");

ECE264. updated on Thursday 3rd January, 2013 62 Please send corrections, comments, and
questions to yunglu@purdue.edu

return;
}
for (iter = 1; iter < n; iter ++)
{
printf("%d %d\n", iter, n - iter);
f(n - iter);
printf("%d %d\n", iter, n - iter);

}
}

int main(int argc, char * argv[])
{

f(3);
return EXIT_SUCCESS;

}

4. Write a program that takes one positive integer as a command argument and print the fol-
lowing pattern.

If the input is 1, the program prints

1

If the intput is 2, the program prints

1 2 1

If the intput is 3, the program prints

1 2 1 3 1 2 1

If the input is 4, the program prints

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

Let X be the output when the input is n− 1. When the input is n, the output is

X n X

5. Consider the ball selection problem again with some changes. There are three colors: red,
blue, and yellow. Assume there is an unlimited supply of all colors. Select the balls and
arrange them (i.e. orders matter). Two red balls cannot be next to each other. How many
options do you have for selecting n balls? For this question, you need to find a mathematical
equation to determine the answer without listing the options.

6. Continue from the previous question. Write a program that can list the options.

ECE264. updated on Thursday 3rd January, 2013 63 Please send corrections, comments, and
questions to yunglu@purdue.edu

7. Consider the following recursion function. The function has two arguments x and c. The
first argument is used for the terminating condition. The second is a counter. Every time
this function is called, the counter increments. This question asks you how many times the
function is called when given different values for the first argument.

#include <stdio.h>
#include <stdlib.h>
int f(int x, int * c)
{

(*c) ++;
if (x <=2)

{
return x;

}
return 2 * f(x - 1, c) + 3 * f(x - 3, c);

}
int main(int argc, char * argv[])
{

int a = 0;
int b = 0;
int v1, v2;
v1 = f(3, & a);
printf("v1 = %d, a = %d\n", v1, a);
v2 = f(5, & b);
printf("v2 = %d, b = %d\n", v2, b);
return EXIT_SUCCESS;

}

What is the output of this program? Your answer should have 4 values: v1, a, v2, and b.

8. Consider integer partition. When partitioning 3,

3 = 1 + 1 + 1
= 1 + 2
= 2 + 1
= 3

There are 4 different ways (4 ”=”) to partition the value 3. As another example, we consider
partitioning 4:

4 = 1 + 1 + 1 + 1
= 1 + 1 + 2
= 1 + 2 + 1
= 1 + 3
= 2 + 1 + 1
= 2 + 2
= 3 + 1
= 4

ECE264. updated on Thursday 3rd January, 2013 64 Please send corrections, comments, and
questions to yunglu@purdue.edu

There are 8 ways to partition value 4. In general, there are 2n−1 ways to partition value n.
You do not have to prove it. You can assume that this is true.

This question asks you to count how many numbers are used in these partitions. In the
example for partitioning 3, 8 numbers are used:

• 1 is used 5 times

• 2 is used 2 times

• 3 is used once

In the example for partitioning 4, 20 numbers are used.

• 1 is used 12 times

• 2 is used 5 times

• 3 is used twice

• 4 is used once

How many numbers are used when you partition value 5?

Find a general rule for a positive integer n. When partitioning n, f(n) numbers are used.
Write down the recursive relation to compute f(n).

ECE264. updated on Thursday 3rd January, 2013 65 Please send corrections, comments, and
questions to yunglu@purdue.edu

ECE264. updated on Thursday 3rd January, 2013 66 Please send corrections, comments, and
questions to yunglu@purdue.edu

Chapter 4

Pointer

4.1 Pointer and Address

What is a pointer? A pointer is a variable and its value is a memory address. Even though a pro-
gram cannot decide which address is used to stored a particular variable (such as a), the program
can obtain the address given by the operating system by adding & in front of a variable.

int a = -7;
int * ptr; /* ptr is a pointer */
ptr = & a; /* ptr’s value is a’s address */

The first statement creates an integer variable a; its value is -7. The second statement creates
an integer pointer ptr. The statement means ptr’s value is an address. An integer is stored at
that address. The third statement assigns a’s address to ptr’s value. The call stack looks like the
following (we ignore the frame in this case).

Symbol Address Value
ptr 1021 1020
a 1020 -7

Since ptr is a pointer, its value stores an address. In this example, a’s address is 1020 so ptr’s
value is 1020. Please notice that ptr itself also occupies space in the call stack; ptr’s address is
1021. In Chapter 2, we always used 100 for the starting address. Here I use 1020 to remind you
that we have no control of the address. The address is determined by the operating system.

If the program continues with

* ptr = 94;

67

The call stack becomes

Symbol Address Value
ptr 1021 1020
a 1020 94

The value of a has changed to 94. Why? The statement

* ptr = 94;

means taking ptr’s value as an address and modifying the value at that address. Since ptr’s value
is 1020, the statement assigns 94 to the address. Now, a’s value is 94. The next line puts * ptr at
the right side of the assignment.

int c = * ptr;

Symbol Address Value
c 1022 94
ptr 1021 1020
a 1020 94

Another integer variable is created and its value is 94. Is this the same as

int c = a;

When * ptr is at the right side of an assignment, it means taking ptr’s value as an address and
read the value at that address. Since ptr’s value is 1020, the statement reads the value at 1020 and
this value is 94.

There are four different ways to use * in C programs. This table summarizes the usages.

ECE264. updated on Thursday 3rd January, 2013 68 Please send corrections, comments, and
questions to yunglu@purdue.edu

Example Meaning
5 * 17 Multiplication. 5 * 17 is 85
int * ptr; create a pointer variable. ptr’s value is an address. An integer is

stored at that address
ptr = & val assign val’s address to ptr’s value
* ptr = (left hand side of assignment) take ptr’s value as an address and

modify the value at that address
= * ptr (right hand side of assignment) take ptr’s value as an address and

read the value at that address

Table 4.1: Four different usages of * in C programs. Sometimes you can see LHS for “left hand
side” and RHS for “right hand side”.

The same symbol * has four different meanings. Make sure you fully un-
derstand this table.

We summarize using the following example.

int a;
int b;
int * ptr; /* ptr is a pointer */
ptr = & a; /* ptr’s value is a’s address */

* ptr = 10; /* a’s value is 10 */
b = * ptr; /* b’s value is also 10 */

* ptr = a * b; /* a’s value becomes 100 */

In a C statement, the right hand side is evaluated before assigning the result to the left hand
side. Hence, the last statement gets 10 × 10 = 100 first and then assigns 100 to * ptr. This makes
a’s value 100.

4.2 Pointer and Argument

Calling a function usually has the intention of changing some variables. This example changes
one variable by using the function’s return value:

int a;
a = f(/* some arguments */);

ECE264. updated on Thursday 3rd January, 2013 69 Please send corrections, comments, and
questions to yunglu@purdue.edu

The value of a is changed by the value returned from f. Is it possible to change two or more
variables through a function call? Is it possible to write a swap function?

int a = 4;
int b = 7;
/* call swap function */
/* a is 7 and b is 4 now */

The previous chapter explains that a function can see only its own frame. As a result, the
function has no access to variables in the calling function’s frame. Fortunately, pointers allow a
function to access the caller’s frame. This is how to write the swap function.

/* file: swap.c
purpose: swap two integers, using pointers

*/
#include <stdio.h>
#include <stdlib.h>
void swap(int * s, int * t)
{

int u = * s;

* s = * t;

* t = u;
}

int main(int argc, char * argv[])
{

int a = 4;
int b = 7;
printf("before calling swap a = %d, b = %d.\n", a, b);
swap (& a, & b); /* remember & */
/* return location 1 */
printf("after calling swap a = %d, b = %d.\n", a, b);
return EXIT_SUCCESS;

}

How does this work? Let’s trace this program by using the call stack. We start with main’s
frame.

Frame Symbol Address Value

main
b 101 7
a 100 4

We consider the frame when swap is called. As always, the return location is pushed to the
call stack. The function returns nothing (void) so there is no value address. The function has two
arguments s and t and both are pointers. Their values are the addresses of a and b because main
uses & a and & b when calling swap.

ECE264. updated on Thursday 3rd January, 2013 70 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

f2

u 105 ?
t 104 101
s 103 100
- 102 return location 1

main
b 101 7
a 100 4

Inside swap, u is an integer. Using the rules in Table 4.1, u’s value is 4 because it is * s.
Remember that * s reads the value at address 100 since it is at the right hand side.

Frame Symbol Address Value

f2

u 105 4
t 104 101
s 103 100
- 102 return location 1

main
b 101 7
a 100 4

The next statement looks confusing but it can be understood using the rules in Table 4.1.

* s = * t;

First, * t takes t’s value as an address and read the value at that address. Since t’s value is
101, the value at address 101 is 7. Therefore, the right hand side is 7. The left hand side is * s so
the value 7 is assigned to the address 100. This changes a’s value to 7.

Frame Symbol Address Value

f2

u 105 4
t 104 101
s 103 100
- 102 return location 1

main
b 101 7
a 100 7

The last statement in swap is

* t = u;

ECE264. updated on Thursday 3rd January, 2013 71 Please send corrections, comments, and
questions to yunglu@purdue.edu

This assign u’s value, 4, to the address 101 and changes b’s value to 4.

Frame Symbol Address Value

f2

u 105 4
t 104 101
s 103 100
- 102 return location 1

main
b 101 4
a 100 7

The swap function finishes and its frame is popped. Back to the main function, the values of
a and b have been swapped.

Frame Symbol Address Value

main
b 101 4
a 100 7

This swap program is helpful understanding pointers and the call stack.
Please study the program carefully.

4.3 Array and Argument

This section desribes how to pass an array as an argument and to find certain properties of the
array. Specifically, we are going to write functions that

• find the maximum value in the array’s elements

• find the minimum value in the array’s elements

• add all array’s elements

• compute the average of the array’s elements

• determine whether the array’s elements are in the ascending order

ECE264. updated on Thursday 3rd January, 2013 72 Please send corrections, comments, and
questions to yunglu@purdue.edu

4.4 Practice Problems

1. For the following program

/* file: pointer1.c
purpose: practice problems for pointer

*/
#include <stdio.h>
#include <stdlib.h>
void f(int * a, int * b)
{

int * c;
c = a;
a = b;
/* draw the call stack when the program reaches here */
b = c;

}
int main(int argc, char * argv[])
{

int s = 5;
int t = 19;
printf("s = %d, t = %d\n", s, t);
f(& s, & t);
printf("s = %d, t = %d\n", s, t);
return EXIT_SUCCESS;

}

draw the call stack when the program finishes

a = b;

What is the output of this program?

2. For the following program

/* file: pointer2.c
purpose: practice problems for pointer

*/
#include <stdio.h>
#include <stdlib.h>
void f(int * a, int * b)
{

int c;
c = (* a) * (* b);
/* draw the call stack when the program reaches here */

* a = c;

ECE264. updated on Thursday 3rd January, 2013 73 Please send corrections, comments, and
questions to yunglu@purdue.edu

/* draw the call stack when the program reaches here */
}
int main(int argc, char * argv[])
{

int s = 5;
int t = 19;
printf("s = %d, t = %d\n", s, t);
f(& s, & t);
printf("s = %d, t = %d\n", s, t);
return EXIT_SUCCESS;

}

draw the call stack when the program finishes

c = (* a) * (* b);

and when the program finishes

* a = c;

What is the output of this program?

3. Draw the call stack when the program reaches each Label.

/*
file: pointer3.c

*/

#include <stdio.h>
#include <stdlib.h>
int fun1(int a, int * b);
int fun2(int a, int * b);

int main(int argc, char * argv[])
{

int a = 2;
int b = 6;
int * p1 = & a;
/* Label 1 */
printf("at Label 1, a = %d, b = %d, * p1 = %d\n", a, b, * p1);

*p1 = fun2(b, p1);
/* Label 7 */
printf("at Label 7, a = %d, b = %d, * p1 = %d\n", a, b, * p1);
return EXIT_SUCCESS;

}

ECE264. updated on Thursday 3rd January, 2013 74 Please send corrections, comments, and
questions to yunglu@purdue.edu

int fun1(int a, int * b)
{

int s;
/* Label 4 */
printf("at Label 4, a = %d, *b = %d\n", a, * b);

* b = a;
s = (* b) * 2;
/* Label 5 */
printf("at Label 5, s = %d, a = %d, *b = %d\n", s, a, * b);
return s;

}

int fun2(int a, int * b)
{

int s, t, u;
s = a;
/* Label 2 */
printf("at Label 2, s = %d, a = %d, * b = %d\n", s, a, *b);
t = (* b) + a;
/* Label 3 */
printf("at Label 3, s = %d, t = %d, a = %d, * b = %d\n", s, t, a, *b);
u = fun1(t, b);

* b = u;
/* Label 6 */
printf("at Label 6, s = %d, t = %d, u = %d, a = %d, * b = %d\n",

s, t, u, a, *b);
return (s + u);

}

ECE264. updated on Thursday 3rd January, 2013 75 Please send corrections, comments, and
questions to yunglu@purdue.edu

ECE264. updated on Thursday 3rd January, 2013 76 Please send corrections, comments, and
questions to yunglu@purdue.edu

Chapter 5

Memory Management (Heap)

Chapter 2 describes one type of memory: stack. Stack memory follows a simple rule: first in, last
out. The call stack is managed by compilers and operating systems.

Sometimes, programmers want to have more control of memory space. They want to be able
to allocate memory when necessary and release memory when the allocated memory is no longer
needed. For this purpose, computers have another type of memory: heap. Before talking about
how to use heap memory, let’s review how to create a fixed-size array.

5.1 Create a Fixed-Size Array

C allows two ways to create an array. The first is a fixed-size array and its size is already known
when the program is written. The following example creates an array of six integers.

int arr[6];

C does not initialize array elements. After creating this array, the elements’ values are un-
known. They may be any value. A common mistake is to assume that the elements are zero.

The following code assigns the first three elements to 11, -29, and 74.

arr[0] = 11;
arr[1] = -29;
arr[2] = 74;

77

The values of the other three elements are still unknown.

In C programs, indexes start from zero. If an array has six elements, the indexes can be 0 to
5 (inclusively). A common mistake is to use 1 to 6 for the indexes. C does not check whether
an index is invalid. If your program uses an invalid index, the program’s behavior is undefined.
Sometimes, the program works; sometimes, the program does not. You need to be careful not to
make this mistake.

5.2 Create an Array using malloc

Creating a fixed-size array must specify the array’s size when the program is written. This is
problematic because the the size may be unknown. Sometimes, we need to create an array whose
size is known after the program starts. We will use malloc to create an array. The following code
creates an array of integers.

int * arr2;
int length;
scanf("%d", & length);
arr2 = malloc(length * sizeof(int));

Notice * in front of arr2. The value of length is entered by a user. Thus, the value is known
only after the program starts running. If we want to create an array of integers, we need an integer
pointer. We need to use sizeof(int) because the size of an integer may be different on different
machines. Also, make sure the types match: using int in creating the pointer and in allocating
memory. If you do the following

int * arr2;
arr2 = malloc(length * sizeof(char));
/* WRONG */
/* types do not match, one is int, the other is char */

The program is wrong because the types do not match. Of course, the following is also prob-
lematic

int * arr2;
arr2 = malloc(length * sizeof(double));
/* WRONG */
/* types do not match, one is int, the other is double */

To create an array of length characters, we need to specify char in both places:

ECE264. updated on Thursday 3rd January, 2013 78 Please send corrections, comments, and
questions to yunglu@purdue.edu

char * arr2;
arr2 = malloc(length * sizeof(char));
/* correct */
/* an array of characters */

Some books suggest casting before malloc like the following

int * arr2;
arr2 = (int *) malloc(length * sizeof(int));

Adding (int *) in front of malloc is an old way of writing C programs. You may see that
in some books but you don’t need to do that any more.

Your programs should check whether malloc succeeds. If it fails, arr2 is NULL. Your pro-
grams should handle this problem before doing anything else. Why does malloc fail? When
the system cannot provide as much space as requested. This is more likely in embedded systems
where memory is limited. C uses NULL to indicate an invalid value for a memory address.

After creating this array, we can assign values to the elements in the same way

arr2[0] = 11;
arr2[1] = -29;
arr2[2] = 74;

When we no longer need this array, we have to release the memory occupied by this array.

free(arr2);

You should develop a habit typing free right after typing malloc so that you do not forget
to call free. You can insert code between them in this way:

malloc
/* insert code here */
free

When you use malloc, you need to specify the number of elements in the array. When you use
free, you should not (and cannot) specify the number of elements. If your program calls malloc
without calling free, the program has memory leak. Memory leak is a serious problem because a
program has a limit about the amount of memory that can be allocated by calling malloc. The
limit depends on the hardware and also the operating systems. You can use valgrind to detect
memory leak. Section 5.8 explains how to use valgrind.

ECE264. updated on Thursday 3rd January, 2013 79 Please send corrections, comments, and
questions to yunglu@purdue.edu

5.3 Stack and Heap

When a program declares a pointer, the call stack has this pointer. For example,

int * arr2;

Symbol Address Value
arr2 200 ?

For simplicity of explanation, we are going to assume length is 6 here. This statement

arr2 = malloc(6 * sizeof(int));

assigns a heap memory address to arr2. The heap memory is pretty far away from the stack
memory, i.e. their addresses are quite different. In this example, I use 10000 for the heap address.

ECE264. updated on Thursday 3rd January, 2013 80 Please send corrections, comments, and
questions to yunglu@purdue.edu

Symbol Address Value Address Value
arr2 200 10000 10005 ?

10004 ?
10003 ?
10002 ?
10001 ?
10000 ?

(a) (b)

Figure 5.1: (a) Call stack. After calling malloc, arr2’s value is an address in the heap memory. In
this example, we use 10000 for the value. Six memory locations are allocated and they are adjacent.
(b) Heap memory. The values have not been assigned so “?” is used for their values. We need to
use a symbol in the stack (arr2) to access heap memory so the heap memory has no column for
symbols.

The following assignment changes the first element of the array.

arr2[0] = 11;

The heap memory at 10000 changes

Symbol Address Value Address Value
arr2 200 10000 10005 ?

10004 ?
10003 ?
10002 ?
10001 ?
10000 11

(a) (b)

arr2[2] = 74;

changes the heap memory at 1002:

Symbol Address Value Address Value
arr2 200 10000 10005 ?

10004 ?
10003 ?
10002 74
10001 ?
10000 11

(a) (b)

ECE264. updated on Thursday 3rd January, 2013 81 Please send corrections, comments, and
questions to yunglu@purdue.edu

How does this work?

The program takes arr2’s value as an address; in this example the value is 10000. If the index
is 0, the value stored at that address is modifed. If the index is 1, the value stored at the next
address is modifed.

The following example creates an array whose length is determined by argc. The program
converts the arguments into integers, since each element of argv is a string. Then, the program
adds the integers’ values and prints the sum.

/* file: egmalloc.c
purpose: create an array whose size is specified at run time.
The array’s elements are the command line arguments.
The program adds the elements and prints the sum.

*/
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char * argv[])
{

int * arr2;
int iter;
int sum = 0;
if (argc < 2)

{
printf("Need to provide some integers.\n");
return EXIT_FAILURE;

}
arr2 = malloc(argc * sizeof(int));
if (arr2 == NULL)

{
printf("malloc fails.\n");
return EXIT_FAILURE;

}
/* iter starts at 1 because argv[0] is the program’s name */
for (iter = 1; iter < argc; iter ++)

{
arr2[iter] = (int) strtol(argv[iter], NULL, 10);

}
printf("The sum of ");
for (iter = 1; iter < argc; iter ++)

{
printf("%d ", arr2[iter]);
sum += arr2[iter];

}
printf("is %d.\n", sum);

free (arr2);

ECE264. updated on Thursday 3rd January, 2013 82 Please send corrections, comments, and
questions to yunglu@purdue.edu

return EXIT_SUCCESS;
}

The following shows two examples running the program. If an argument is not an integer
(“hello” and “C” in the second example), the value is zero.

> ./egmalloc 5 8 -11 4 3 27
The sum of 5 8 -11 4 3 27 is 36.
> ./egmalloc 7 9 hello 1 6 C 2 4 8
The sum of 7 9 0 1 6 0 2 4 8 is 37.

We expand Table 4.1 by adding the rules for an array created using malloc.

ECE264. updated on Thursday 3rd January, 2013 83 Please send corrections, comments, and
questions to yunglu@purdue.edu

Example Meaning
5 * 17 Multiplication. 5 * 17 is 85
int * ptr; create a pointer variable. ptr’s value is an address. An integer is stored at

that address
ptr = & val assign val’s address to ptr’s value
* ptr = (left hand side of assignment) take ptr’s value as an address and modify the

value at that address
= * ptr (right hand side of assignment) take ptr’s value as an address and read the

value at that address
int * arr; create a pointer variable. arr’s value is an address.
arr = malloc(sizeof(int) * n);

allocate an array on the heap memory. This array has n elements. Each el-
ement is an integer, as specified by sizeof(int). Please notice that the
asterisk inside the parenthesis means multiplication. The address of the first
element (index is 0) is stored as arr’s value.

arr[k] = (left hand side of assignment) take arr’s value as an address, add k (called
offset) to get a new address, modify the value at that address. Here, k must
be between 0 and n -1. Otherwise, the program’s behavior is undefined.

= arr[k] (right hand side of assignment) take arr’s value as an address, add k (called
offset) to get a new address, read the value at that address. Here, k must be
between 0 and n -1. Otherwise, the program’s behavior is undefined.

Table 5.1: The first part of this table repeats Table 4.1. The second part summarizes how to create
an arry on heap memory and to access the array’s elements.

5.4 Array and Address

In your first C class, you may have heard that arrays and pointers are related. In fact, the name of
an array stores the address of the first element. The following program shows an example of the
addresses of array elements

/* file: address.c
purpose: print the addresses of array elements

*/
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char * argv[])
{

int arr[6];
printf("arr = %p, &arr[0] = %p.\n", arr, & arr[0]);
printf("&arr[0] = %p, &arr[1] = %p.\n", & arr[0], & arr[1]);
printf("sizeof(int) = %ld.\n", sizeof(int));
return EXIT_SUCCESS;

}

ECE264. updated on Thursday 3rd January, 2013 84 Please send corrections, comments, and
questions to yunglu@purdue.edu

Running this program produces an output like the following

> ./address
arr = 0x7fffe3a7fea0, &arr[0] = 0x7fffe3a7fea0.
&arr[0] = 0x7fffe3a7fea0, &arr[1] = 0x7fffe3a7fea4.
sizeof(int) = 4.

We said “like the following” because the outputs are not the same every time. Running the
same program two more times and the outputs are

> ./address
arr = 0x7fff673a2880, &arr[0] = 0x7fff673a2880.
&arr[0] = 0x7fff673a2880, &arr[1] = 0x7fff673a2884.
sizeof(int) = 4.
> ./address
arr = 0x7ffff33f2580, &arr[0] = 0x7ffff33f2580.
&arr[0] = 0x7ffff33f2580, &arr[1] = 0x7ffff33f2584.
sizeof(int) = 4.

As you can see, the actual value of &arr[0] or &arr[1] changes in different executions.
However, the following observations are true:

• The value of arr is always the same as &arr[0] in each execution.

• The difference of &arr[1] and &arr[0] is always four.

• The value of sizeof(int) is always four because my computer uses 4 bytes for an integer.
If you use a different computer, the value can be different.

This program shows that arr is actually a pointer, storing the address of the first element, i.e.
&arr[0]. The difference of &arr[1] and &arr[0] is four because each element is an integer.
Each integer takes four bytes, as indicated by sizeof(int). As I mentioned earlier, in most
cases, we do not need to worry about the actual values of the addresses. We can simply treat the
addresses as continuous integers (10000, 10001, . . .).

5.5 Function Return a Heap Address

A function may return the address of a heap memory. For example

ECE264. updated on Thursday 3rd January, 2013 85 Please send corrections, comments, and
questions to yunglu@purdue.edu

int * f1(int n)
{

int * ptr;
ptr = malloc (n * sizeof(int));
return ptr;

}
void f2(void)
{

int * arr;
arr = f1(6);
/* return location */
arr[4] = 7;
free (arr);

}

Let’s consider the call stack just before f1 returns ptr;

Symbol Address Value Address Value
ptr 103 10000 10005 ?

- 102 value address 100 10004 ?
- 101 return location 10003 ?

arr 100 ? 10002 ?
10001 ?
10000 ?

(a) (b)

After f1 returns, this is what in the call stack and the heap memory.

Symbol Address Value Address Value
arr 100 10000 10005 ?

10004 ?
10003 ?
10002 ?
10001 ?
10000 ?

(a) (b)

The allocated heap memory is still available because the program has not called free yet. This
is a fundamental difference between stack and heap memory: when a function finishes, its frame
is popped. For heap memory, it is still available until the program calls free.

The statement

ECE264. updated on Thursday 3rd January, 2013 86 Please send corrections, comments, and
questions to yunglu@purdue.edu

arr[4] = 872;

changes an element in the array:

Symbol Address Value Address Value
arr 100 10000 10005 ?

10004 872
10003 ?
10002 ?
10001 ?
10000 ?

(a) (b)

Before f2 finishes, it should call free. Otherwise, the program leaks memory. The purpose
of this example is to show that memory allocated by malloc can be passed between functions.
Please be aware that this example does not follow the principle mentioned on page 79. In this
example, malloc and free are called in two different functions. This is a bad programming
style. It is easy to forget calling free in f2 because f2 does not call malloc.

5.6 Two-Dimensional Array in C

In C programs, creating a fixed-size two-dimensional array can be achieved by adding another
dimension:

int arr2d[5][3]; /* an array with 5 rows and 3 columns */
arr2d[0][2] = 4; /* assign 4 to the third column of the first row */
arr2d[3][1] = 6; /* assign 6 to the second column of the fourth row */

In this example, the first dimension has five rows and the indexes are between zero and four
(inclusively). The second dimension has three columns; the indexes are between zero and two
(inclusively).

It is more complicated creating a two-dimensional array whose size is known only at run time.
We first create a one-dimensional array of integer pointers (int *) and then each pointer is used
to create an integer array. Figure 5.2 illustrates this concept.

/* file: twodarray.c
purpose: show how to create a two-dimensional array
The size of the array is 8 rows x 3 columns

*/

ECE264. updated on Thursday 3rd January, 2013 87 Please send corrections, comments, and
questions to yunglu@purdue.edu

arr2d

add2d[0][0] add2d[0][1] add2d[0][2] arr2d[0]

arr2d[1]

arr2d[2]

arr2d[3]

arr2d[4]

arr2d[5]

arr2d[6]

arr2d[7]

add2d[1][0] add2d[1][1] add2d[1][2]

add2d[2][0] add2d[2][1] add2d[2][2]

add2d[3][0] add2d[3][1] add2d[3][2]

add2d[4][0] add2d[4][1] add2d[4][2]

add2d[5][0] add2d[5][1] add2d[5][2]

add2d[6][0] add2d[6][1] add2d[6][2]

add2d[7][0] add2d[7][1] add2d[7][2]

Figure 5.2: A two-dimensional array is created in two steps. The first step creates an array of
integer pointers. In the second step, each pointer stores the address of the first element in an
integer array.

#include <stdio.h>
#include <stdlib.h>
#define NUMROW 8
#define NUMCOLUMN 3
int main(int argc, char * argv[])
{

int * * arr2d;
int row;
/* step 1: create an arry of integer pointers */
arr2d = malloc(NUMROW * sizeof (int *));
for (row = 0; row < NUMROW; row ++)

{
/* step 2: for each row (i.e. integer pointer), create an

integer array */
arr2d[row] = malloc(NUMCOLUMN * sizeof (int));

}
arr2d[4][1] = 6;
arr2d[6][0] = 19;
/* the first index can be 0 to 7 (inclusive) */
/* the second index can be 0 to 2 (inclusive) */

/* memory must be released in the reverse order */
for (row = 0; row < NUMROW; row ++)

{
/* release the memory of each row first */
free (arr2d[row]);

ECE264. updated on Thursday 3rd January, 2013 88 Please send corrections, comments, and
questions to yunglu@purdue.edu

}
/* release the array of integer pointer */
free (arr2);
return EXIT_SUCCESS;

}

After creating the two-dimensional array, it can be used in the same way as a fixed-size array.
Before the program ends, the allocated memory must be released. Memory must be released in
the reverse order as it is allocated.

Let’s review the types used in creating arrays. An array’s name stores the address of the first
element. Therefore, the type of an array is an integer pointer. If we want to create an array using
malloc, we need to use int *.

int arr[6]; /* an array of fixed size, 6 elements */
int * arr2;
arr2 = malloc(9 * sizeof(int)); /* 9 elements */
arr2[4] = 19; /* arr2[4] is an integer */
free(arr2);

A two-dimensional array is composed of a one dimensional array of integer pointers. There-
fore, the type is int * *. The same reason makes the argument of malloc use sizeof(int

*), not sizeof(int).

int * * arr2d;
arr2d = malloc(10 * sizeof (int *));
arr2d[4] = malloc(3 * sizeof(int)); /* arr2[4] is an integer pointer */
arr2d[4][2] = 8; /* arr2d[4][2] is an integer */

Each element of arr2d, for example arr2d[2], is an integer pointer. An index removes one
asterisk; therefore, an element is an integer pointer. This pointer can be used to create an array of
the second dimension.

5.7 Pointer and Argument

We can pass the address of the heap memory (i.e. a pointer) as a function argument. The following
example passes an array allocated on the heap memory to a function.

/* file: heaparg.c
purpose: pass the address of heap memory as a function argument

*/

ECE264. updated on Thursday 3rd January, 2013 89 Please send corrections, comments, and
questions to yunglu@purdue.edu

#include <stdio.h>
#include <stdlib.h>
int sum(int * array, int length)
{
int iter;
int answer = 0;
for (iter = 0; iter < length; iter ++)

{
answer += array[iter];

}
return answer;

}
int main(int argc, char * argv[])
{

int * arr;
int iter;
int length = 12;
int total;
arr = malloc(length * sizeof(int));
if (arr == NULL)

{
printf("malloc fails.\n");
return EXIT_FAILURE;

}
for (iter = 0; iter < length; iter ++)

{
arr[iter] = iter;

}
total = sum(arr, length);
/* return location 1 */
printf("Total is %d.\n", total);
free (arr);
return EXIT_SUCCESS;

}

In this example, arr is passed to function sum as an argument. Remember that C programs
copy values to function arguments. The call stack and the heap memory looks like the following
inside the sum function, just before the for block starts.

ECE264. updated on Thursday 3rd January, 2013 90 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value Address Value

sum

answer 211 0 10011 11
iter 210 - 10010 10

length 209 12 10009 9
array 208 10000 10008 8

- 207 value address 205 10007 7
- 206 return location 1 10006 6

main

total 205 ? 10005 5
length 204 12 10004 4
iter 203 13 10003 3
arr 202 10000 10002 2
argv 201 - 10001 1
argc 200 - 10000 0

call stack heap memory

The argument array is a pointer so its value is an address. When main calls sum, the value of
arr (i.e. 10000) is copied to the value of array. Inside sum, array[0] refers to the value stored
at 10000 and it is 0. Similarly, array[7] refers to the value stored at 10007 and it is 7.

Passing heap address makes your programs more flexible. A function can modify the data and
the changes are visible to the caller. In the following example, the function multi2 doubles the
array elements.

/* file: multi2.c
purpose: double each array element

*/
#include <stdio.h>
#include <stdlib.h>
void multi2(int * array, int length)
{

int iter;
for (iter = 0; iter < length; iter ++)

{
array[iter] *= 2;

}
}
int main(int argc, char * argv[])
{

int * arr;
int iter;
int length = 12;
arr = malloc(length * sizeof(int));
if (arr == NULL)

{
printf("malloc fails.\n");

ECE264. updated on Thursday 3rd January, 2013 91 Please send corrections, comments, and
questions to yunglu@purdue.edu

return EXIT_FAILURE;
}

for (iter = 0; iter < length; iter ++)
{

arr[iter] = iter;
}

printf("Original array: ");
for (iter = 0; iter < length; iter ++)

{
printf("%2d ", arr[iter]);

}
printf("\n");

multi2(arr, length);

printf("New array: ");
for (iter = 0; iter < length; iter ++)

{
printf("%2d ", arr[iter]);

}
printf("\n");

free (arr);
return EXIT_SUCCESS;

}

The output of this program is shown below

Original array: 0 1 2 3 4 5 6 7 8 9 10 11
New array: 0 2 4 6 8 10 12 14 16 18 20 22

Remember to call free before the program ends. Otherwise, the program has memory leak.
Also, to make your program easier to understand and easier to debug, your program should call
malloc and free in the same function. If your program calls malloc and free in different func-
tions, you will soon lose track whether

1. memory allocated by calling malloc is released by calling free later or

2. memory released by calling free has been allocated by calling malloc earlier.

5.8 Use valgrind to Detect Memory Leak

In Linux, you can use valgrind to detect memory leak. Suppose we remove

ECE264. updated on Thursday 3rd January, 2013 92 Please send corrections, comments, and
questions to yunglu@purdue.edu

free(arr);

near the end of main. In a Linux terminal, type the following two lines

> gcc -g -Wall -Wshadow multi2.c -o multi2
> valgrind --leak-check=yes ./multi2

The first line uses gcc to create an executable file called multi2. The second line uses
valgrind to detect memory leak. The output includes a lot of things. Pay attention to the follow-
ing message

LEAK SUMMARY:
definitely lost: 48 bytes in 1 blocks

Why does the program leak 48 bytes? The program allocates space for 12 integers by calling
malloc. On this machine, each integer occupies 4 bytes. Therefore, the program leaks 48 bytes. If
we put back the statement

free(arr);

valgrind reports

All heap blocks were freed -- no leaks are possible

ECE264. updated on Thursday 3rd January, 2013 93 Please send corrections, comments, and
questions to yunglu@purdue.edu

ECE264. updated on Thursday 3rd January, 2013 94 Please send corrections, comments, and
questions to yunglu@purdue.edu

Chapter 6

String

What is a string? Anything between two double quotations is a string. For example,

• “Hello”

• “C Language”

• “write 2 programs.”

• “symbols $%# can be parts of a string”

As you can see, a string can include alphabets, digits, space, and symbols. C does not have a
specific type for strings. Instead, C uses arrays of characters for strings. Each string must ends
with a special character ’\0’. It is not shown above but it is important and often forgotten. Thus,
if we want to store the string “Hello”, we need an array that have 6 elements as shown below

char str[6]; /* create an array with 6 characters */
strcpy(str, "Hello"); /* copy "Hello" to the array */

The function strcpy copies a string. This function takes two arguments: the first is the des-
tination and the second is the source. If you count, there are five characters in “Hello” but we
need space for the special ’\0’ character. The function does not check whether the destination
has enough space. In fact, the manual page says, “If the destination string of a strcpy() is not large
enough, then anything might happen. Overflowing fixed-length string buffers is a favorite cracker
technique for taking complete control of the machine. Any time a program reads or copies data
into a buffer, the program first needs to check that there’s enough space.”

C provides a function, strlen, to calculate the length of a string. This function does not count
the special ’\0’ character. Thus, strlen(‘‘Hello’’) is 5. If we want to copy a string from
src to dest, the following code is commonly used.

95

char * dest = malloc(sizeof(char) * (strlen(src) + 1));
strcpy(dest, src);

The first statement allocates space for the destination. We need to add one to the value from
strlen to accommodate the special ’\0’ character. What happens if a string does not end with
the ’\0’ character? The program’s behavior is undefined because many functions for strings go
through the elements one by one until reaching this special character.

The C function strlen does not include ’\0’. You must remember to add
1 for this additional character.

Every string must end with the special ’\0’ character. This must be an element of the character
array where the string is stored. What happens if the special ’\0’ character is not the last element
of a character array? This is not a problem. It simply means the string ends without using all
elements of the array. For example, we can create a character array with 10 elements and fill the
first five elements as “Hello”.

char str[10];
str[0] = ’H’;
str[1] = ’e’;
str[2] = ’l’;
str[3] = ’l’;
str[4] = ’o’;
str[5] = ’\0’;

When we call strlen(str), the function returns 5 because there are 5 elements before ’\0’.
It does not matter what is stored at str[7] or str[8].

6.1 Compare Strings using strcmp

We can use strcmp to compare two strings. This function takes two arguments:

strcmp(str1, str2);

The function returns a negative integer, zero, or a positive integer dependings on whether
str1 is smaller, equal, or greater than str2. How do we define the order of two strings? It is

ECE264. updated on Thursday 3rd January, 2013 96 Please send corrections, comments, and
questions to yunglu@purdue.edu

similar to the orders of words in a dictionary, called lexicographical order. For example, “about” is
smaller than “forever” because a is before f in the alphabetic order. “Education” is after “Change”.

How do we compare upper cases and lower cases? How do we define the order if one or
both strings contain digits or symbols? The order is determined by the ASCII (American Standard
Code for Information Interchange) values. ASCII assigns an integer value to each character. The
value for ’A’ is 65 and the value of ’a’ is 97. ASCII also assigns a value to each symbol or digit. The
value is 35 for ’#’ and 55 for digit ’7’. The last statement may sound strange. The value of digit ’7’
is 55. What does this mean?

C has different types, including char for characters and int for integers. The two types are
treated differently. This can be shown using the following example:

/*
* charint.c

* how how C treats integer and character differently

*/
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char * argv[])
{

int v = 55;
printf("%d\n", v);
printf("%c\n", v);
return EXIT_SUCCESS;

}

The output of this program is

55
7

Why do the two lines print different values, even though both use v? The first printf treats v
as an integer by using %d; hence, the printed value is 55. The second printf treats v as a character
by using %c. Since 55 is the ASCII value of character ’7’, 7 is printed on screen.

6.2 Use strstr to Detect Substring

If string str1 is part of another string str2, we say str1 is a substring of str2. For example,
“str” is a substring of “structure”. “W” is a substring of “Welcome”; “sea” is not a substring
of “sightseeing”. If we want to determine whether one string is part of another string, we can
use the strstr function. This function takes two arguments. If shorterstr is a substring of

ECE264. updated on Thursday 3rd January, 2013 97 Please send corrections, comments, and
questions to yunglu@purdue.edu

longerstr, strstr(longerstr, shortstr) returns a value that is not NULL. Please notice
the order of the two arguments.

The following program checks whether argv[2] is a substring of argv[1].

/*
* substr.c

* find whether one string is another string’s substring

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char * argv[])
{

if (argc < 3)
{

printf("Please enter two strings.\n");
return EXIT_FAILURE;

}
printf("argv[1] = %s\n", argv[1]);
printf("argv[2] = %s\n", argv[2]);
printf("argv[2] is ");
if (strstr(argv[1], argv[2]) == NULL)

{
printf("not ");

}
printf("a substring of argv[1].\n");
return EXIT_SUCCESS;

}

> gcc substr.c -o substr

> ./substr hello lo
argv[1] = hello
argv[2] = lo
argv[2] is a substring of argv[1].

> ./substr hello low
argv[1] = hello
argv[2] = low
argv[2] is not a substring of argv[1].

We can use quotation marks to enclose arguments. For example,

ECE264. updated on Thursday 3rd January, 2013 98 Please send corrections, comments, and
questions to yunglu@purdue.edu

> ./substr "have a nice day" "ce day"
argv[1] = have a nice day
argv[2] = ce day
argv[2] is a substring of argv[1].

> ./substr "have a nice day" "hot day"
argv[1] = have a nice day
argv[2] = hot day
argv[2] is not a substring of argv[1].

6.3 Understand argv

We have seen

int main(int argc, char * argv[])

many times. What is argv really? It is a two-dimensional array of characters. Figure 5.2
shows how a two-dimensional array is organized in a C program. The program twodarray.c
on page 87 has the same number of elements for each row by using this statement to allocate
memory:

arr2d[row] = malloc(NUMCOLUMN * sizeof (int));

The value NUMCOLUMN specifies the length of each row. However, the rows are allowed to have
different lengths.

Where is the memory holding argc and argv? Since argv is an array of arrays, where is
the memory holding the elements? The main function is a special function; the arguments are
provided by operating systems (more precisely, by the shell program in the terminal). Since main
is also a function, the arguments are stored on the call stack, as any other function.

Frame Symbol Address Value

main
argv 101 ?
argc 100 ?

Let’s execute the substr program with these arguments:

> ./substr nice ice

ECE264. updated on Thursday 3rd January, 2013 99 Please send corrections, comments, and
questions to yunglu@purdue.edu

There are three arguments so argc is 3. The value of argv is the address of the first element,
i.e. & argv[0]. Where is argv[0] stored? Depending on the processor and the operating
system, the elements of argv may be stored on the call stack or the heap. Fortunately, we do not
need to know where they are stored. In this example, we assume the elements are stored on the
call stack. The following shows the call stack. The value of argv is the address of argv[0]. For
now, we use - for the values of argv[0], argv[1], and argv[2] to simplify the call stack.

Frame Symbol Address Value

main

argv[2] 104 -
argv[1] 103 -
argv[0] 102 -
argv 101 102
argc 100 3

Since argv is a two-dimensional array, argv[0], argv[1], and argv[2] each stores the
starting address of an array. The first argument is “./substr” and it is stored on the call stack as
shown below.

Frame Symbol Address Value

main

argv[0][8] 113 \0
argv[0][7] 112 r
argv[0][6] 111 t
argv[0][5] 110 s
argv[0][4] 109 b
argv[0][3] 108 u
argv[0][2] 107 s
argv[0][1] 106 /
argv[0][0] 105 .
argv[2] 104 -
argv[1] 103 -
argv[0] 102 105
argv 101 102
argc 100 3

Each string must end with the special ’\0’ character. Thus, at address 113 stores this character
to indicate the end of argv[0].

Next, we show the elements of argv[1] on the call stack.

ECE264. updated on Thursday 3rd January, 2013 100 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

main

argv[1][4] 118 \0
argv[1][3] 117 e
argv[1][2] 116 c
argv[1][1] 115 i
argv[1][0] 114 n
argv[0][8] 113 \0
argv[0][7] 112 r
argv[0][6] 111 t
argv[0][5] 110 s
argv[0][4] 109 b
argv[0][3] 108 u
argv[0][2] 107 s
argv[0][1] 106 /
argv[0][0] 105 .
argv[2] 104 -
argv[1] 103 114
argv[0] 102 105
argv 101 102
argc 100 3

Last, we show the elements of argv[2] on the call stack.

ECE264. updated on Thursday 3rd January, 2013 101 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

main

argv[2][3] 122 \0
argv[2][2] 121 e
argv[2][1] 120 c
argv[2][0] 119 i
argv[1][4] 118 \0
argv[1][3] 117 e
argv[1][2] 116 c
argv[1][1] 115 i
argv[1][0] 114 n
argv[0][8] 113 \0
argv[0][7] 112 r
argv[0][6] 111 t
argv[0][5] 110 s
argv[0][4] 109 b
argv[0][3] 108 u
argv[0][2] 107 s
argv[0][1] 106 /
argv[0][0] 105 .
argv[2] 104 119
argv[1] 103 114
argv[0] 102 105
argv 101 102
argc 100 3

If you print the length of argv[1], it is 4 because the special character is not counted. How-
ever, argv[1] must have space for that character to indicate the end of the string.

6.4 Count Substrings

Sometimes, we want to count the occurences of a substring. For example, “ice” is a substring of
“nice” and it occurs only once. In this string, “This is his history book”, the substring “is” occurs
4 times. We can use strstr to count the occurence of a substring but we need to understand
strstrmore deeply. The previous section says that strstr returns NULL if the second argument
is not a substring of the first argument. What does strstr return if the second argument is a
substring of the first argument?

If the second argument is a substring of the first argument, strstr returns the address of the
first occurrence of the substring. Let’s use the call stack shown earlier. Calling

strstr(argv[1], argv[2]);

ECE264. updated on Thursday 3rd January, 2013 102 Please send corrections, comments, and
questions to yunglu@purdue.edu

returns 115 because it is the address of the first occurrence of the substring “ice” in “nice”. We
can store this address in a pointer:

char * ptr;
ptr = strstr(argv[1], argv[2]);

The call stack is shown below

Frame Symbol Address Value

main

ptr 123 115
argv[2][3] 122 \0
argv[2][2] 121 e
argv[2][1] 120 c
argv[2][0] 119 i
argv[1][4] 118 \0
argv[1][3] 117 e
argv[1][2] 116 c
argv[1][1] 115 i
argv[1][0] 114 n
argv[0][8] 113 \0
argv[0][7] 112 r
argv[0][6] 111 t
argv[0][5] 110 s
argv[0][4] 109 b
argv[0][3] 108 u
argv[0][2] 107 s
argv[0][1] 106 /
argv[0][0] 105 .
argv[2] 104 119
argv[1] 103 114
argv[0] 102 105
argv 101 102
argc 100 3

If we increment ptr, what happens? Its value becomes 116, the address of the next element.

Now, let’s consider a longer argument. Suppose argv[1] is “This is his history book.” and
argv[2] is “is”. The substring “is” occurs four times in argv[1]. We are going to focus on
these two arguments and omit the other parts of the call stack. We also change the address of
argv[1][0] to 200 as a reminder that we have no control of the addresses.

ECE264. updated on Thursday 3rd January, 2013 103 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

main

ptr 229 -
argv[2][2] 228 \0
argv[2][1] 227 s
argv[2][0] 226 i
argv[1][25] 225 \0
argv[1][24] 224 .
argv[1][23] 223 k
argv[1][22] 222 o
argv[1][21] 221 o
argv[1][20] 220 b
argv[1][19] 219
argv[1][18] 218 y
argv[1][17] 217 r
argv[1][16] 216 o
argv[1][15] 215 t
argv[1][14] 214 s
argv[1][13] 213 i
argv[1][12] 212 h
argv[1][11] 211
argv[1][10] 210 s
argv[1][9] 209 i
argv[1][8] 208 h
argv[1][7] 207
argv[1][6] 206 s
argv[1][5] 205 i
argv[1][4] 204
argv[1][3] 203 s
argv[1][2] 202 i
argv[1][1] 201 h
argv[1][0] 200 T

We can use strstr to find the first occurrence of “is”:

char * ptr;
ptr = strstr(argv[1], argv[2]); /* ptr’s value is 202 */

How do we find the second occurrence of “is”? Can we call strstr again using argv[1]
and argv[2]? If we do that, ptr is 202 again. We cannot proceed to find the second occurrence.
Instead, we should move after the first occurrence if we want to find the second occurrence. This
is how we can find the second occurrence:

if (ptr != NULL)

ECE264. updated on Thursday 3rd January, 2013 104 Please send corrections, comments, and
questions to yunglu@purdue.edu

{
ptr ++; /* move after the first occurrence */
ptr = subsub(ptr, argv[2]);

}

We check whether ptr is NULL. If it is NULL, there is no first occurrence. Otherwise, we incre-
ment ptr so that strstr will start from address 203, not 200. To find the third occurrence, we
execute the same code again. Since we do not know the number of occurrences, we should replace
if by while. The complete program is shown below:

/*
* countsubstr.c

* count the occurrence of a substring

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char * argv[])
{

int count = 0;
char * ptr;
if (argc < 3)

{
printf("Please enter two strings.\n");
return EXIT_FAILURE;

}
printf("argv[1] = %s, strlen = %d\n", argv[1], (int) strlen(argv[1]));
printf("argv[2] = %s, strlen = %d\n", argv[2], (int) strlen(argv[2]));
ptr = argv[1];
do

{
ptr = strstr(ptr, argv[2]);
if (ptr != NULL)

{
printf("%s\n", ptr);
count ++;
ptr ++;

}
} while (ptr != NULL);

if (count == 0)
{

printf("argv[2] is not a substring of argv[1].\n");
}

else
{

ECE264. updated on Thursday 3rd January, 2013 105 Please send corrections, comments, and
questions to yunglu@purdue.edu

printf("argv[2] occurs %d times in argv[1].\n", count);
}

return EXIT_SUCCESS;
}

6.5 Practice Problems

1. Implement the int strlen(char * str) function. This function counts the number of
characters until reaching the special character ’\0’. To distinguish it from the strlen func-
tion provided by C, we call our function mystrlen.

2. Implement the int strlen(char * str) function using recursion. If the value of str
is ’\0’, the function returns zero. Otherwise, the function calls itself with str++ as the
argument. When the recursive call returns, add one to the value and return the sum.

3. Implement the int strcmp(char * str1, char * str2) function. To distinguish it
from the strcmp function provided by C, we call our function mystrcmp.

4. Write a function int countA2M(string * str) that counts the occurrences of charac-
ters between ’A’ and ’M’, including these two characters.

ECE264. updated on Thursday 3rd January, 2013 106 Please send corrections, comments, and
questions to yunglu@purdue.edu

Chapter 7

Structure

What are the differences between int and double? They are data types. Data types specify

• format of data. Integers and double-precision floating-point numbers are stored differently.

• the range of data and the size for storage. For a 32-bit machine, valid integers are between
-2,147,483,648 (- 231, about -109) and 2,147,483,647 (231 - 1). In contrast, the absolute value of
a double-precision floating number can be as small as 10−308 and as large as 10308 (approxi-
mately).

• operation. Because the two types have different formats, when a program has a statement
a + b, the actual operations depends on whether a and b are integers or floating-point
numbers. Also, some operations are restricted to certain data types. For example, switch
must use an integer; double cannot be used for switch.

C also supports other data types, such as char and float. C does not have a separate type for
strings; instead, C uses arrays of char for a strings, as explained in the previous chapter. A natural
question is whether C allows programmers to create new types. The answer is yes. Why would
programmers want to create new types? The most obvious reason is to put related data together.
For example, a college student has a name (string), year (integer, between 1 and 4), grade point
average (floating-point), and so on.

7.1 Vector

A vector has three components: x, y, and z. It is desirable to create a new type called Vector
and put these data together. Programmers can create new data types by using typedef struct.
This means creating a structure that contains multiple pieces of data. By borrowing the terms used
in C++ and Java, we call each piece of data an attribute. The structure’s name is given at the end
of the structure, after } before ;.

107

/* file: vector.c
purpose: a programmer-defined type called Vector

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{

int x;
int y;
int z;

} Vector; /* don’t forget ; */

int main(int argc, char * argv[])
{

Vector v1;
v1.x = 3;
v1.y = 6;
v1.z = -2;
printf("The vector is (%d, %d, %d).\n", v1.x, v1.y, v1.z);
return EXIT_SUCCESS;

}

After creating the structure, we can use it to create an object (borrowing the term from C++ and
Java again). In this program, v1 is a Vector object. This object has three attributes. To access
an attribute, we need to add a period after v1, such as v1.x and v1.y. The program’s output is
shown below

The vector is (3, 6, -2).

Can you compare two objects using == or !=? Can you do something like

Vector v1;
Vector v2;
v1.x = 1;
v1.y = 2;
v1.z = 3;
v2.x = 0;
v2.y = -1;
v2.z = -2;

if (v1 != v2)
{

printf("v1 and v2 are different.\n");
}

ECE264. updated on Thursday 3rd January, 2013 108 Please send corrections, comments, and
questions to yunglu@purdue.edu

The answer is no. If you do so, gcc will tell you

invalid operands to binary !=

If you want to compare two Vector objects, you have to compare each attribute separately.

7.2 Object as an Argument

A Vector object can be passed as a function argument. All attributes are copied to the argument of
the called function. The following example moves printing to a different function.

/* file: vectorarg.c
purpose: pass a Vector object as a function argument

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{

int x;
int y;
int z;

} Vector;

void printVector(Vector v)
{

printf("The vector is (%d, %d, %d).\n", v.x, v.y, v.z);
}

int main(int argc, char * argv[])
{

Vector v1;
v1.x = 3;
v1.y = 6;
v1.z = -2;
printVector(v1);
return EXIT_SUCCESS;

}

How do we know that the attributes are copied? The following program shows that
changeVector changes the argument. However, inside main, the attributes of v1 are un-
changed.

ECE264. updated on Thursday 3rd January, 2013 109 Please send corrections, comments, and
questions to yunglu@purdue.edu

/* file: vectorarg2.c
purpose: change a Vector object in a function

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{

int x;
int y;
int z;

} Vector;

void printVector(Vector v)
{

printf("The vector is (%d, %d, %d).\n", v.x, v.y, v.z);
}

void changeVector(Vector v)
{

v.x = 5;
v.y = -3;
v.z = 7;
printVector(v);

}

int main(int argc, char * argv[])
{

Vector v1;
v1.x = 3;
v1.y = 6;
v1.z = -2;
printVector(v1);
changeVector(v1);
printVector(v1);
return EXIT_SUCCESS;

}

The output of this program is

The vector is (3, 6, -2).
The vector is (5, -3, 7).
The vector is (3, 6, -2).

What really happens when a function’s argument is an object? This can be explained by show-
ing the call stack before calling changeVector.

ECE264. updated on Thursday 3rd January, 2013 110 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

main
v1.z 102 -2
v1.y 101 6
v1.x 100 3

Calling changeVector pushes its frame to the call stack. The argument is an object and has
three attributes. The values are copied from the calling function.

Frame Symbol Address Value

changeVector

v.z 106 -2
v.y 105 6
v.x 104 3

- 103 return location

main
v1.z 102 -2
v1.y 101 6
v1.x 100 3

The function changeVector changes the attributes. However, all these changes occur in the
function’s frame.

Frame Symbol Address Value

changeVector

v.z 106 7
v.y 105 -3
v.x 104 5

- 103 return location

main
v1.z 102 -2
v1.y 101 6
v1.x 100 3

When changeVector finishes, the frame is popped and the program resumes at main. The
call stack is shown below.

Frame Symbol Address Value

main
v1.z 102 -2
v1.y 101 6
v1.x 100 3

The attributes of v1 are unchanged.

ECE264. updated on Thursday 3rd January, 2013 111 Please send corrections, comments, and
questions to yunglu@purdue.edu

7.3 Object and Pointer

Is it possible to change an object’s attributes inside a function and keep the changes even after the
function returns? The answer is yes. We need to use pointers.

/* file: vectorptr.c
purpose: change a Vector object in a function by using a pointer

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{

int x;
int y;
int z;

} Vector;

void printVector(Vector v)
{

printf("The vector is (%d, %d, %d).\n", v.x, v.y, v.z);
}

void changeVector(Vector * p)
{

p -> x = 5;
p -> y = -3;
p -> z = 7;
printVector(* p);

}

int main(int argc, char * argv[])
{

Vector v1;
v1.x = 3;
v1.y = 6;
v1.z = -2;
printVector(v1);
changeVector(& v1);
printVector(v1);
return EXIT_SUCCESS;

}

The changeVector function’s argument is a pointer.

void changeVector(Vector * p)

ECE264. updated on Thursday 3rd January, 2013 112 Please send corrections, comments, and
questions to yunglu@purdue.edu

Remember the four different ways using * explained in Table 4.1. The argument is the second
way using *: declaring p is a pointer.

When calling changeVector, main has to provide the address of a Vector object, as shown
below

changeVector(& v1);

This can be better understood by showing the call stack

Frame Symbol Address Value

changeVector
p 104 100
- 103 return location

main
v1.z 102 -2
v1.y 101 6
v1.x 100 3

Instead of copying the whole object, attribute by attribute, the argument p stores only the
address of the object v1 in main. What is the -> symbol inside changeVector? This symbol
means taking the value as an address and adding the appropriate offset to read or write an attribute. If
it is at the left hand side (LHS) of an assignment, the attribute is modified (i.e. written). If it
is at the right hand side (RHS) of an assignment, the attribute is read. What is an offset? It
means the distance from the beginning of the object to the corresponding attribute. For a Vector
object, x has no offset because it is the first attribute. The second attribute y has an offset equal to
sizeof(int) because x is an integer. The third attribute z has offset equal to sizeof(int) +
sizeof(int) because x and y are both integers. The compiler calculates offsets so programmers
do not need to worry about the details. The statement

p -> x = 5;

changes the value at address 100.

Frame Symbol Address Value

changeVector
p 104 100
- 103 return location

main
v1.z 102 -2
v1.y 101 6
v1.x 100 5

p -> y = -3;

ECE264. updated on Thursday 3rd January, 2013 113 Please send corrections, comments, and
questions to yunglu@purdue.edu

changes the value at address 101.

Frame Symbol Address Value

changeVector
p 104 100
- 103 return location

main
v1.z 102 -2
v1.y 101 -3
v1.x 100 5

Why do we need to add * in front of p when changeVector calls printVector? In
changeVector, p is a pointer. However, printVector expects an object because there is no
* in the line

void printVector(Vector v)

In changeVector, adding * in front of p is the fourth way using * explained in Table 4.1. The
object stored at addresses 100-102 is copied to the argument of printVector. How do we know
the object is copied? Because there is no *. You can change v’s attribute inside printVector.
The change is lost when the function finishes.

7.4 Return an Object

Can a function return a Vector object? Yes. The following example shows a C++ style construc-
tor.

/* file: vectorconstructor.c
purpose: create a constructor for Vector

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{

int x;
int y;
int z;

} Vector; /* don’t forget ; */

Vector Vector_construct(int a, int b, int c)
{

Vector v;

ECE264. updated on Thursday 3rd January, 2013 114 Please send corrections, comments, and
questions to yunglu@purdue.edu

v.x = a;
v.y = b;
v.z = c;
return v;

}

void Vector_print(Vector v)
{

printf("The vector is (%d, %d, %d).\n", v.x, v.y, v.z);
}

int main(int argc, char * argv[])
{

Vector v1 = Vector_construct(3, 6, -2);
Vector_print(v1);
return EXIT_SUCCESS;

}

What is the advantage of creating a constructor? It makes the program easier to read. More-
over, it reminds a programmer that a Vector object has three attributes because the function has
three arguments. This helps programmers remember to initialize all attributes.

7.5 Object and malloc

Is it possible to create an object using heap memory, instead of stack memory? Yes.

/* file: vectorconmalloc.c
purpose: create a Vector object using malloc

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{

int x;
int y;
int z;

} Vector;

Vector * Vector_construct(int a, int b, int c)
/* notice * */
{
Vector * v;

ECE264. updated on Thursday 3rd January, 2013 115 Please send corrections, comments, and
questions to yunglu@purdue.edu

v = malloc(sizeof(Vector));
if (v == NULL) /* allocation fail */
{

printf("malloc fail\n");
return NULL;

}
v -> x = a;
v -> y = b;
v -> z = c;
return v;

}

void Vector_destruct(Vector * v)
{

free (v);
}

void Vector_print(Vector * v)
{

printf("The vector is (%d, %d, %d).\n", v -> x, v -> y, v -> z);
}

int main(int argc, char * argv[])
{

Vector * v1 = Vector_construct(3, 6, -2);
if (v1 == NULL)

{
return EXIT_FAILURE;

}
Vector_print(v1);
Vector_destruct(v1);
return EXIT_SUCCESS;

}

To create an object on the heap memory, we need to declare a Vector pointer and use malloc.
Since it is a pointer, we need to use -> for the attributes. How does the program work? Let’s trace
the program by showing the call stack. Before calling Vector construct, the call stack has only
the frame for the main function:

Frame Symbol Address Value
main v1 100 ?

Calling Vector construct pushes a frame to the stack.

ECE264. updated on Thursday 3rd January, 2013 116 Please send corrections, comments, and
questions to yunglu@purdue.edu

Frame Symbol Address Value

Vector construct

v 106 ?
c 105 -2
b 104 6
a 103 3
- 102 value address 100
- 101 return location

main v1 100 ?

Calling malloc allocates a piece of memory on heap. The size is sufficient to accommodate
three integers. Suppose malloc returns 60000. The call stack becomes

Frame Symbol Address Value

Vector construct

v 106 60000
c 105 -2
b 104 6
a 103 3
- 102 value address 100
- 101 return location

main v1 100 ?

The heap memory is shown below

Address Value
60002 ?
60001 ?
60000 ?

The statement

v -> x = a;

modifies the value at the address 60000.

The heap memory is changed to

Address Value
60002 ?
60001 ?
60000 3

ECE264. updated on Thursday 3rd January, 2013 117 Please send corrections, comments, and
questions to yunglu@purdue.edu

When Vector construct returns, v’s value is written to the return address 100. Therefore,
the call stack becomes

Frame Symbol Address Value
main v1 100 60000

The memory allocated on heap has to be released by calling free. This is the purpose of the
destructor Vector destruct.

7.6 Constructor and Destructor

An object may contain pointers and dynamically allocated memory. To handle this type of objects,
you need four functions.

• constructor: allocate memory and assign values to attributes.

• destructor: release memory.

• copy constructor: create a new object from an existing object. The exsting object may be
created by using the constructor or the copy constructor. We borrow terminology from C++
again. This is called deep copy.

• assignment: modify an object that has already been created by using the constructor or the
copy constructor.

Consider a structure called Person:

/*
file: person.c
purpose: constructor, destructor, copy constructor, assignment

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{

char * name;
int year;
int month;
int date;

} Person;

Person * Person_construct(char * n, int y, int m, int d);

ECE264. updated on Thursday 3rd January, 2013 118 Please send corrections, comments, and
questions to yunglu@purdue.edu

void Person_destruct(Person * p);
Person * Person_copy(Person * p);
/* create a new Person object by copying the attributes of p */
Person * Person_assign(Person * p1, Person * p2);
/* p1 is already a Person object, make its attribute the same

as p2’s the attributes */
void Person_print(Person * p);

int main(int argc, char * argv[])
{

Person * p1 = Person_construct("Amy", 1989, 8, 21);
Person * p2 = Person_construct("Jennifer", 1991, 2, 17);
Person * p3 = Person_copy(p1); /* create p3 the first time */
Person_print(p1);
Person_print(p2);
Person_print(p3);
p3 = Person_assign(p3, p2);
Person_print(p3);
Person_destruct(p1);
Person_destruct(p2);
Person_destruct(p3);
return EXIT_SUCCESS;

}

Person * Person_construct(char * n, int y, int m, int d)
{

Person * p;
p = malloc(sizeof(Person));
if (p == NULL)

{
printf("malloc fail\n");
return NULL;

}
p -> name = malloc(sizeof(char) * (strlen(n) + 1));
/* + 1 for the ending character ’\0’ */
strcpy(p -> name, n);
p -> year = y;
p -> month = m;
p -> date = d;
return p;

}

void Person_destruct(Person * p)
{

/* notice the order, p must be released after p -> name has been

ECE264. updated on Thursday 3rd January, 2013 119 Please send corrections, comments, and
questions to yunglu@purdue.edu

released */
free (p -> name);
free (p);

}

Person * Person_copy(Person * p)
{

return Person_construct(p -> name, p -> year, p -> month, p -> date);
}

Person * Person_assign(Person * p1, Person * p2)
{

Person_destruct(p1);
return Person_copy(p2);

}

void Person_print(Person * p)
{

printf("Name: %s. ", p -> name);
printf("Date of Birth: %d/%d/%d\n", p -> year, p -> month, p -> date);

}

The output of this program is

Name: Amy. Date of Birth: 1989/8/21
Name: Jennifer. Date of Birth: 1991/2/17
Name: Amy. Date of Birth: 1989/8/21
Name: Jennifer. Date of Birth: 1991/2/17

Let’s examine the program from the constructor, Person construct. The function allocates
memory for a Person object. Each Person object contains a name. We want to allocate just
enough memory for the name; thus, we use a char pointer. The space is allocated based on the
length of the name. We need to add one to accommodate the ending character ’\0’. Forgetting
to add one is a common mistake.

We need to allocate the space for the object, i.e. p, before allocating memory for p -> name.
Without the space for p, p -> name does not exist yet. With the space for p -> name, we can
copy the name from the argument to the attribute. The remaining statements in the constructor
are similar to the ones we have seen in the previouse section. The destructor is symmetric to the
constructor. The constructor allocates memory for p before p -> name. In the destructor, the
memory for p -> name is released first.

General rule: the destructor releases memory in the reverse order as the
memory is allocated in the constructor.

ECE264. updated on Thursday 3rd January, 2013 120 Please send corrections, comments, and
questions to yunglu@purdue.edu

Why do we need the copy constructor? Why can’t we simply write

p3 = p1;

Does this cause syntax error? No, there is no syntax error. This simply makes p1 and p3 have
the same value, i.e. they refer to the same address in heap memory.

What is the difference between p1 and p4 in the following code?

Person * p1;
Person p4;
p1 = Person_construct("Amy", 1989, 8, 21);
p4.year = 1990;

With *, p1 is a pointer; its value is an address. This is the second usage of *, as explained in
Table 4.1. In contrast, p4 is not a pointer; it already has space for the attributes (uninitialized). The
call stack and heap memory looks like the following (we ignore p2 and p3 for now)

Symbol Address Value Address Value
p4.date 204 ? 20003 ’\0’
p4.month 203 ? 20002 ’y’
p4.year 202 ? 20001 ’m’
p4.name 201 ? 20000 ’A’

p1 200 10000 10003 21
10002 8
10001 1989
10000 20000

call stack heap memory

Notice that p1 is a pointer so its value is an address in the heap memory. In this example,
we use 10000 for the value of p1. The first attribute p1 -> name is also a pointer. Thus, at
10000 stores another address. We use 20000 for this example. The actual name, starting with the
character ’A’, is stored at address 20000.

We can assign values to p4’s attributes

p4.year = 1991;
p4.month = 1;
p4.date = 17;

ECE264. updated on Thursday 3rd January, 2013 121 Please send corrections, comments, and
questions to yunglu@purdue.edu

Symbol Address Value Address Value
p4.date 204 17 20003 ’\0’
p4.month 203 1 20002 ’y’
p4.year 202 1991 20001 ’m’
p4.name 201 ? 20000 ’A’

p1 200 10000 10003 21
10002 8
10001 1989
10000 20000

call stack heap memory

Assign Alice to p4’s name.

p4.name = malloc(sizeof(char) * (strlen("Alice") + 1);
strcpy(p4.name, "Alice");

Suppose malloc returns address 9000. The call stack and the heap memory becomes

Symbol Address Value Address Value
p4.date 204 17 20003 ’\0’
p4.month 203 1 20002 ’y’
p4.year 202 1991 20001 ’m’
p4.name 201 9000 20000 ’A’

p1 200 10000 10003 21
10002 8
10001 1989
10000 20000
9005 ’\0’
9004 ’e’
9003 ’c’
9002 ’i’
9001 ’l’
9000 ’A’

call stack heap memory

What happens if we have the following code?

Person p5;

ECE264. updated on Thursday 3rd January, 2013 122 Please send corrections, comments, and
questions to yunglu@purdue.edu

Since p5 is not pointer, it has space for the attributes.

Symbol Address Value Address Value
p5.date 208 ? 20003 ’\0’
p5.month 207 ? 20002 ’y’
p5.year 206 ? 20001 ’m’
p5.name 205 ? 20000 ’A’

p4.date 204 17 10003 21
p4.month 203 1 10002 8
p4.year 202 1991 10001 1989
p4.name 201 9000 10000 20000
p1 200 10000 9005 ’\0’

9004 ’e’
9003 ’c’
9002 ’i’
9001 ’l’
9000 ’A’

call stack heap memory

The following statement copies p4’s attributes to p5’s attributes, one by one.

p5 = p4;

Symbol Address Value Address Value
p5.date 204 17 20003 ’\0’
p5.month 203 1 20002 ’y’
p5.year 202 1991 20001 ’m’
p5.name 203 9000 20000 ’A’

p4.date 203 17 10003 21
p4.month 203 1 10002 8
p4.year 202 1991 10001 1989
p4.name 201 9000 10000 20000
p1 200 10000 9005 ’\0’

9004 ’e’
9003 ’c’
9002 ’i’
9001 ’l’
9000 ’A’

call stack heap memory

ECE264. updated on Thursday 3rd January, 2013 123 Please send corrections, comments, and
questions to yunglu@purdue.edu

There is no problem for the date of birth: p4 and p5 have separate space. The name attributes
are pointers and they have the same value; thus, they refer to the same address in the heap mem-
ory. This is called shallow copy. Is this a problem? In most cases, yes.

Consider this code

int x = 61;
int y = x;
x = 92;

What is y’s value? It is still 61, even though x has been changed to 92. The problem of shallow
copy is that they have the same value and refer to the same address in the heap memory. Changing
p4.name also changes p5.name; changing p5.name also changes p4.name. Since we never
allocate memory for p5.name, we should not release the memory, i.e. we should not have the
following statement:

free(p5.name);

We should release only p4.name:

free(p4.name);

If we release the same heap memory twice, the program will crash.

Now, we can understand why we need to have copy constructor and assignment. We need
to handle memory allocation and release. The copy constructor allocates separate memory space
so that changing one later does not affect the other. This is called deep copy. If one object already
has memory space, the assignment function has to provide a sufficient amount of memory. In this
program, we want to change p3 -> name from Amy to Jennifer. Since Jennifer is longer, the new
name needs more space. If there is already enough memory (for example, changing from Jennifer
to Amy), the memory can be used. This requires the program to keep track of the amount of space
allocated. This program takes a simpler approach: always releases memory first and then allocates
memory again.

Earlier, I said shallow copy is problematic in most cases. What are the cases when it is not
problematic? When would we actually want to have shallow copy? First, you need to know that
your program performs shallow copy and objects share the same address in the heap memory.
This is an advance topic so I will only describe the concept. Sometimes, you do want several
objects to share the same memory space. This can be useful when the required memory space is
very large and you don’t want every object to have a copy. If the data are not changed, the objects
share the memory. The program needs to keep track of the number of objects using this piece of
memory so that the memory is released when no object uses the memory any more. If one object
wants to change the data, the program does make a copy. This is called copy on write.

ECE264. updated on Thursday 3rd January, 2013 124 Please send corrections, comments, and
questions to yunglu@purdue.edu

7.7 Structure in Structure

Can a structure’s attribute be a structure? Yes. This is an example moving a Person’s date of birth
from three integers to one Date object.

/*
file: person2.c
purpose: a object’s attribute is an object

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{

int year;
int month;
int date;

} DateOfBirth;

DateOfBirth DateOfBirth_construct(int y, int m, int d)
{

DateOfBirth dob;
dob.year = y;
dob.month = m;
dob.date = d;
return dob;

}

void DateOfBirth_print(DateOfBirth d)
{

printf("Date of Birth: %d/%d/%d\n", d.year, d.month, d.date);
}

typedef struct
{

char * name;
DateOfBirth dob;

} Person;

Person * Person_construct(char * n, int y, int m, int d);
void Person_destruct(Person * p);
Person * Person_copy(Person * p);
/* create a new Person object by copying the attributes of p */
Person * Person_assign(Person * p1, Person * p2);
/* p1 is already a Person object, make its attribute the same

as p2’s the attributes */

ECE264. updated on Thursday 3rd January, 2013 125 Please send corrections, comments, and
questions to yunglu@purdue.edu

void Person_print(Person * p);

int main(int argc, char * argv[])
{

Person * p1 = Person_construct("Amy", 1989, 8, 21);
Person * p2 = Person_construct("Jennifer", 1991, 2, 17);
Person * p3 = Person_copy(p1); /* create p3 the first time */
Person_print(p1);
Person_print(p2);
Person_print(p3);
p3 = Person_assign(p3, p2);
Person_print(p3);
Person_destruct(p1);
Person_destruct(p2);
Person_destruct(p3);
return EXIT_SUCCESS;

}

Person * Person_construct(char * n, int y, int m, int d)
{

Person * p;
p = malloc(sizeof(Person));
if (p == NULL)

{
printf("malloc fail\n");
return NULL;

}
p -> name = malloc(sizeof(char) * (strlen(n) + 1));
/* + 1 for the ending character ’\0’ */
strcpy(p -> name, n);
p -> dob = DateOfBirth_construct(y, m, d);
return p;

}

void Person_destruct(Person * p)
{

/* notice the order, p must be released after p -> name has been
released */

free (p -> name);
free (p);

}

Person * Person_copy(Person * p)
{

return Person_construct(p -> name, p -> dob.year,

ECE264. updated on Thursday 3rd January, 2013 126 Please send corrections, comments, and
questions to yunglu@purdue.edu

p -> dob.month, p -> dob.date);
}

Person * Person_assign(Person * p1, Person * p2)
{

Person_destruct(p1);
return Person_copy(p2);

}

void Person_print(Person * p)
{

printf("Name: %s. ", p -> name);
DateOfBirth_print(p -> dob);

}

We create a hierarchy of structures. Person construct calls DateOfBirth construct.
Person print calls DateOfBirth print. What is the advantage? As your programs become
more complex, you may find such a hierarchy helpful for organization. You don’t want to cre-
ate one structure that has everything. Instead, you should put related data together and create a
structure, then organize related structures into another structure. Each structure has a constructor
to initialize all attributes. If a structure has pointers for dynamically allocated memory, make sure
you also have a destructor. If deep copy is what you want (in most cases), remember the copy
constructor and the assignment function.

ECE264. updated on Thursday 3rd January, 2013 127 Please send corrections, comments, and
questions to yunglu@purdue.edu

ECE264. updated on Thursday 3rd January, 2013 128 Please send corrections, comments, and
questions to yunglu@purdue.edu

Chapter 8

File Operations

A program has many ways to obtain input data, for example

• using scanf to get data from a user through keyboard.

• using argc and argv to get data from the command line.

• using file operations to get data stored on a disk.

For the third option, the program must obtain the file’s name first. The file’s name itself is
another piece of data. The following examples use argv[1] as a file’s name. The program must
check whether argc is at least two to decide whether argv[1] is available.

/* file: file1.c
purpose: check whether argv[1] exists

*/
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char * argv[])
{

if (argc < 2)
{

printf("Need to provide the file’s name.\n");
return EXIT_FAILURE;

}
printf("The name of the file is %s.\n", argv[1]);
return EXIT_SUCCESS;

}

Running the program without the file’s name will produce a message and the program returns
EXIT FAILURE.

129

> gcc -Wall -Wshadow file1.c -o file1
> ./file1
Need to provide the file’s name.

When the main function returns, the program terminates. By returning EXIT FAILURE, this
program informs the terminal that this program ends abnormally. If the file’s name is given, the
program prints the file’s name:

> ./file1 data
The name of the file is data.

8.1 Read Character by Character Using fgetc

After getting the file’s name, we need to open the file for reading. This is accomplished by calling
the fopen function. The function has two arguments: the first is the name of the file; the second
is the mode to open this file. In this example, we open a text file to read. This mode is specified by
“r” in the second argument.

Calling fopen does not always open the file successfully. Many reasons can cause failures.
One reason is that the file does not exist in the current directory. Another reason is that the file
cannot be read even if it exists because the user does not have the permission to read this file.
When fopen fails, it returns NULL.

After opening the file, there are many ways to read the data in the file. The first method is
fgetc.

/* file: file2.c
purpose: show how to use fgetc. This program counts the number of
characters in the input file.

*/
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char * argv[])
{

FILE * fptr;
int ch;
int counter = 0;
if (argc < 2)

{
printf("Need to provide the file’s name.\n");
return EXIT_FAILURE;

}
fptr = fopen(argv[1], "r");

ECE264. updated on Thursday 3rd January, 2013 130 Please send corrections, comments, and
questions to yunglu@purdue.edu

if (fptr == NULL)
{

printf("fopen fail.\n");
return EXIT_FAILURE;

}
printf("The name of the file is %s.\n", argv[1]);
do

{
ch = fgetc(fptr);
if (ch != EOF)

{
counter ++;

}
} while (ch != EOF);

fclose(fptr);
printf("The file has %d characters.\n", counter);
return EXIT_SUCCESS;

}

This program counts the number of characters. A character may be an English letter (’a’ to ’z’
or ’A’ to ’Z’), a digit (’0’ to ’9’), a punctuation mark (such as ’,’ and ’;’), and space. At the end of
each line, a new line character (’\n’) is also counted. When the program reaches the end of the file,
a special character is returned by fgetc. This character is called end of file and it is EOF defined in
stdio.h. This program reports the number of characters. Suppose we use the program to count
the number of characters in this C program, this is the result

> gcc -Wall -Wshadow file2.c -o file2
> ./file2 file2.c
The name of the file is file2.c.
The file has 716 characters.

Linux has a program called wc and it reports the numbers of lines, words, and characters in a
file. The program also reports 712 characters:

> wc file2.c
35 105 716 file2.c

Many operating systems restrict the number of opened files. Your programs should call
fclose after finishing all operations. It is a good habit to type fclose right after typing fopen
and then insert appropriate code between them. This can prevent you from forgetting calling
fclose.

How does fgetc work? Calling fopen creates a FILE pointer. A text file is considered a
stream of characters, as illustrated in Figure 8.1. This stream starts at the beginning of the file.
Every time fgetc is called, one character is taken out from the stream. If the program keeps
calling fgetc, eventually all characters are taken and EOF is returned.

ECE264. updated on Thursday 3rd January, 2013 131 Please send corrections, comments, and
questions to yunglu@purdue.edu

/ * f i l e : (a) E S S ; \n } \n EOF

* f i l e : (b) E S S ; \n } \n EOF

fgetc '/'

f i l e : (c) E S S ; \n } \n EOF

fgetc '*'

(d) EOF

fgetc '\n'

(e)

fgetc EOF

Figure 8.1: A text file is like a stream. This example uses file2.c as the input file. (a) After
calling fopen, the stream starts from the very first character of the file and ends with EOF. (b)(c)
Calling fgetc each time takes one character out from the stream. (d) After calling fgetc enough
times, the characters in the file are retrieved. (e) Finally, the end of file character EOF is returned.

8.2 Read Integer

In addition to fgetc, C provides many functions to read data from a file. One of them is fscanf.
It is very similar to scanf, except that it needs one more argument. The first argument is a FILE
pointer. The following program adds the numbers in a file.

/* file: file3.c
purpose: show how to use fscanf. This program reads numbers from a
file and add them together

*/
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char * argv[])
{

FILE * fptr;
int val;
int sum = 0;
if (argc < 2)

{
printf("Need to provide the file’s name.\n");
return EXIT_FAILURE;

}
fptr = fopen(argv[1], "r");

ECE264. updated on Thursday 3rd January, 2013 132 Please send corrections, comments, and
questions to yunglu@purdue.edu

if (fptr == NULL)
{

printf("fopen fail.\n");
return EXIT_FAILURE;

}
printf("The name of the file is %s.\n", argv[1]);
while (fscanf(fptr, "%d", & val) == 1)

{
printf("%d ", val);
sum += val;

}
fclose(fptr);
printf("\nThe sum is %d.\n", sum);
return EXIT_SUCCESS;

}

ECE264. updated on Thursday 3rd January, 2013 133 Please send corrections, comments, and
questions to yunglu@purdue.edu

Figure 8.2: A program uses fscanf to read integers from a file; fscanf is able to read numbers
separated by space or new line (’\n’).

The program keeps reading until no more integer can be read. The return value of fscanf is
the number of successful data retrieval. This example reads one integer each time so the condition
is

while (fscanf(fptr, "%d", & val) == 1)

8.3 Read and Write Integers

Write a program that takes command-line arguments: argv[1]: name of first input file argv[2]:
name of second input file argv[3]: name of output file

The input files contain integers, one integer per line.

This program reads one integer from each input file, add them, and store the sum (another
integer) into the output file, one integer per line.

You can assume that the two input files have the same number of integers, but you do not
know the number in advance.

For example, input file 1 is 8 19 -7 6

Input file 2 is 21 36 81 -7

ECE264. updated on Thursday 3rd January, 2013 134 Please send corrections, comments, and
questions to yunglu@purdue.edu

The output file should be 29 55 74 -1

Your program should ignore space (if any) in each line. Your program should also ignore
empty lines (if any).

Do not worry about overflow or underflow of integers.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char * argv[])
{

/* check whether enough command-line arguments are given */
/* If not enough, return EXIT_FAILURE */
if (argc < 4)

{
return EXIT_FAILURE;

}

/* open the two input files */
FILE * fin1;
FILE * fin2;
fin1 = fopen(argv[1], "r");
fin2 = fopen(argv[2], "r");

/* open the output file */
FILE * fout;
fout = fopen(argv[3], "w");

/* check whether the files are open successfully */
/* if any one fails to open, return EXIT_FAILURE */
if ((fin1 == NULL) || (fin2 == NULL) || (fout == NULL))

{
return EXIT_FAILURE;

}

/* repeat until reaching the end of file */
/* read one integer from input file 1 */
/* read one integer from input file 2 */
/* add the two integers and write the sum to the output file */
while ((! feof(fin1)) && (! feof(fin2)))

{
int val1;
int val2;
int vals;
int rt1;
int rt2;

ECE264. updated on Thursday 3rd January, 2013 135 Please send corrections, comments, and
questions to yunglu@purdue.edu

rt1 = fscanf(fin1, "%d", & val1);
rt2 = fscanf(fin2, "%d", & val2);
if ((rt1 == 1) && (rt2 == 1))
{

vals = val1 + val2;
fprintf(fout, "%d\n", vals);

}
}

/* close the files */
fclose (fin1);
fclose (fin2);
fclose (fout);

return EXIT_SUCCESS;
}

8.4 Read String

Another commonly function for reading data from a file is fgets. This function takes three argu-
ments:

1. an array of characters to store the data

2. the number of characters to read

3. a FILE pointer

If the second argument is size, the function reads as many as size - 1 characters from the
file. The function adds the ending character, ’\0’, automatically. The function may reads fewer
characters if (i) a new line character occurs before reading size - 1 characters or (ii) the file has
reached the end.

The following program reads from a file line by line and counts the number of lines in the file.
We assume that the maximum length of each line is 80 characters, i.e. at least one ’\n’ within
every 80 characters.

/* file: file4.c
purpose: show how to use fgets. Read a file line by line.

*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

ECE264. updated on Thursday 3rd January, 2013 136 Please send corrections, comments, and
questions to yunglu@purdue.edu

#define MAX_LINE_LENGTH 81
int main(int argc, char * argv[])
{

FILE * fptr;
int numLine = 0;
char oneLine[MAX_LINE_LENGTH];
if (argc < 2)

{
printf("Need to provide the file’s name.\n");
return EXIT_FAILURE;

}
fptr = fopen(argv[1], "r");
if (fptr == NULL)

{
printf("fopen fail.\n");
return EXIT_FAILURE;

}
printf("The name of the file is %s.\n", argv[1]);
while (fgets(oneLine, MAX_LINE_LENGTH, fptr) != NULL)

{
numLine ++;

}
fclose(fptr);
printf("The file has %d lines.\n", numLine);
return EXIT_SUCCESS;

}

When the program cannot read from the file any more, fgets returns NULL. This means that
the end of the file has been reached.

8.5 fseek and ftell

When you use fopen to open a file, you start from the very beginning of the file. Every time you
read some data, you move forward, until reaching the end of the file. You can use fseek to move
to a specific location in the file. You can use ftell to know the current location in the file.

8.6 Binary File and Object

This section explains how to write an object to a file and how to read an object from a file. We will
talk about both text file and binary file. We consider Vector objects explained on page 115.

ECE264. updated on Thursday 3rd January, 2013 137 Please send corrections, comments, and
questions to yunglu@purdue.edu

/* file: vectorfile.c
purpose: show how to write and read Vector objects using files

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{

int x;
int y;
int z;

} Vector;

Vector Vector_construct(int a, int b, int c)
{

Vector v;
v.x = a;
v.y = b;
v.z = c;
return v;

}

void Vector_print(char * name, Vector v)
{

printf("%s is (%d, %d, %d).\n", name, v.x, v.y, v.z);
}

void Vector_writet(char * filename, Vector v)
/* writet means write to a text file */
{

FILE * fptr;
fptr = fopen(filename, "w"); /* text file */
if (fptr == NULL)

{
printf("Vector_writet fopen fail\n");
return;

}
fprintf(fptr, "%d %d %d", v.x, v.y, v.z);
fclose (fptr);

}

Vector Vector_readt(char * filename)
/* readt means read from a text file */
{

Vector v = Vector_construct(0, 0, 0);

ECE264. updated on Thursday 3rd January, 2013 138 Please send corrections, comments, and
questions to yunglu@purdue.edu

FILE * fptr;
fptr = fopen(filename, "r"); /* text file */
if (fptr == NULL)

{
printf("Vector_readt fopen fail\n");
return v;

}
if (fscanf(fptr, "%d %d %d", & v.x, & v.y, & v.z) != 3)

{
printf("fprintf fail\n");

}
fclose (fptr);
return v;

}

void Vector_writeb(char * filename, Vector v)
/* writeb means write to a binary file */
{

FILE * fptr;
fptr = fopen(filename, "wb"); /* binary file */
if (fptr == NULL)

{
printf("Vector_writeb fopen fail\n");
return;

}
if (fwrite(& v, sizeof(Vector), 1, fptr) != 1)

{
printf("fwrite fail\n");

}
fclose (fptr);

}

Vector Vector_readb(char * filename)
/* readb means read from a binary file */
{

FILE * fptr;
Vector v = Vector_construct(0, 0, 0);
fptr = fopen(filename, "rb");
if (fptr == NULL)

{
printf("Vector_readb fopen fail\n");
return v;

}
if (fread(& v, sizeof(Vector), 1, fptr) != 1)

{

ECE264. updated on Thursday 3rd January, 2013 139 Please send corrections, comments, and
questions to yunglu@purdue.edu

printf("fread fail\n");
}

return v;
}

int main(int argc, char * argv[])
{

Vector v1 = Vector_construct(13, 206, -549);
Vector v2 = Vector_construct(-15, 8762, 1897);
Vector_print("v1", v1);
Vector_print("v2", v2);
printf("===============================\n");
Vector_writet("vectort.dat", v1);
v2 = Vector_readt("vectort.dat");
Vector_print("v1", v1);
Vector_print("v2", v2);

v1 = Vector_construct(2089, -3357, 1234);
v2 = Vector_construct(7658, 0, 1876);
printf("===============================\n");
Vector_print("v1", v1);
Vector_print("v2", v2);

Vector_writeb("vectorb.dat", v1);
v2 = Vector_readb("vectorb.dat");
printf("===============================\n");
Vector_print("v1", v1);
Vector_print("v2", v2);
return EXIT_SUCCESS;

}

The program contains two write functions and two read functions. Vector writet and
Vector readt use text files. Vector writeb and Vector readb use binary files. When we
use text files, writing and reading objects are natural extensions of writing and reading opeartions
explained earlier. The two functions simply write and read one attribute after another. Make sure
the two functions have the same orders of attributes. Vector writeb and Vector readb open
files in the binary mode by adding b in the second argument when calling fopen1. The following
table describes the differences of text and binary files.

1Some operating systems, including Linux, actually ignore b. It is used primarily for compatibility among different
systems.

ECE264. updated on Thursday 3rd January, 2013 140 Please send corrections, comments, and
questions to yunglu@purdue.edu

Operation Text File Binary File
open a file fopen fopen‡
write fprint fwrite
read fgetc, fgets, or fscanf fread
‡ Opening a binary file needs to add b in the second argument.

Table 8.1: Functions for opening, writing to, and reading from text and binary files.

To write an object in the binary mode, we use fwrite. This function needs four arguments:

1. the address of the object. We need to add & before the object.

2. the size of the object. We use sizeof to find the size of the object. For this example, the size
of a Vector object is sizeof(Vector).

3. the number of objects. This example writes only one object so the value is 1. If your program
has an array of objects, this argument is the number of elements of the array.

4. the FILE pointer

The return value of fwrite is the number of objects written. This number can be different
from the third argument because, for example, the disk is full. It is a good programming habit
checking whether the return value is the same as the third argument. The data written by fwrite
needs to be read by fread, not fscanf. We also need to give four arguments to fread and the
order of the arguments is the same as that for fwrite.

What are advantages and disadvantages of text or binary files? If data are stored in a text file,
you can read it using the more command in terminal or editing it using a text editor. However,
writing and reading objects need to handle attributes one by one. The order in Vector writet
must be the same as the order in Vector readt. Moreover, if one more attribute is added to
Vector, both functions must be changed. These requirements increase the chances of mistakes;
it is easy to change one place and forget to change the other. In contrast, Vector writeb and
Vector readt automatically handle the order of attributes. No change is needed if an attribute
is added to Vector.

8.7 Practice Problems

1. Write a program that takes two arguments (in addition to the program’s own name):
argv[1] is a string to search for; argv[2] is the name of a file. Read the file line by line.
If a line contains the string, print the line. This is similar to the grep function in UNIX. You
can find whether one string contains another string by using the strstr function. Please
note that the string does not need to be a complete word.

ECE264. updated on Thursday 3rd January, 2013 141 Please send corrections, comments, and
questions to yunglu@purdue.edu

2. Improve the solution for the previous problem by reporting the number of times the string
occurs. For example, if a line is

This is a book on C programming. This book is written for you.

In this line, the word “book” appears twice. Therefore, the count is two if the string to search
is “book”.

ECE264. updated on Thursday 3rd January, 2013 142 Please send corrections, comments, and
questions to yunglu@purdue.edu

Chapter 9

Program with Multiple Files

So far each program has only one file. It is impossible to write a complex C program using a single
file. In fact, when you include a header file, such as

#include <stdio.h>

you are already using multiple files. You do not implement printf in your program, right?
Where does it come from? It comes from C libraries— libc.so in /usr/lib/. You don’t need
to know where libraries are stored; gcc handles this for you. Your programs use multiple files
already. In fact, every program you write uses multiple files. Why is C designed in this way?
What are the advantages of writing a program using multiple files?

• Reduce redundant work. Many frequently used functions are supported by libraries. You
don’t have to write your own printf, scanf, or malloc.

• Improve portability. In computing, portability means running the same program across dif-
ferent operating systems, such as Linux, Windows, and MacOS. Some functions handle low-
level activities related to hardware, such as reading files from a disk or sending packets
through a network card. It is better to implement the hardware-specific details in libraries
so that your program can run on different computers, as long as your program uses the cor-
rect libraries. Usually you need to recompile the source code using the compiler at the target
machine.

• Enhance performance. Libraries are usually well optimized so your program can have better
performance.

• Partition work for collaboration. When you write a large program with other people, it is
natural to break the work into smaller units. Each person is responsible for some units and
each unit is stored in a single file.

143

• Save compilation time. Compiling a large program (such as an operating system) can take
many minutes. If the whole program is in a single file and you change only one line, you
have to wait for a long time. A better solution is to break the program into many files and
compile only the files affected by your change. This may take a few seconds, much better
than many minutes.

9.1 Header File

A header file has the .h extension but it is the content, not the file name, that makes a particular
file a header file. A header may include the following definitions or declarations.

• defining symbolic constants, for example,

#define NAME_LENGTH 50

• declare functions, for example,

void printStudent(Student s);

This is a declaration, not a definition or implementation. The declaration provides only the
return type, the function’s name, and the argument’s (or arguments’) type (or types). Do not
forget ; after the closing parenthesis.

• define programmer-created data types, for example

typedef struct
{

char name[NAME_LENGTH];
int year;
float GPA;

} Student;

• include other header files, for example

#include <stdio.h>

The implementation of functions should be in .c files, not header files. Header files are in-
cluded; .c files are compiled and linked. The following is a program using one .h file and one .c
file.

ECE264. updated on Thursday 3rd January, 2013 144 Please send corrections, comments, and
questions to yunglu@purdue.edu

#ifndef STUDENT2_H
#define STUDENT2_H
/* file: student2.h

purpose: a programmer-defined type called Student

*/
#define NAME_LENGTH 50
typedef struct
{

char name[NAME_LENGTH];
int year;
float GPA;

} Student;
#endif

/* file: student2.c
purpose: include a programmer-defined header file

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "student2.h"
int main(int argc, char * argv[])
{

Student s1;
strcpy(s1.name, "Amy Smith");
s1.year = 3;
s1.GPA = 3.6;
printf("The student’s name is %s.\n", s1.name);
switch (s1.year)

{
case 1:

printf(" first-year.\n");
break;

case 2:
printf(" sophomore.\n");
break;

case 3:
printf(" junior.\n");
break;

case 4:
printf(" senior.\n");
break;

}
printf(" GPA = %4.2f.\n", s1.GPA);

ECE264. updated on Thursday 3rd January, 2013 145 Please send corrections, comments, and
questions to yunglu@purdue.edu

return EXIT_SUCCESS;
}

The first two lines of a header file is

#ifndef FILENAME_H
#define FILENAME_H

The last line of a header file is

#endif

This can prevent multiple inclusion. Sometimes, the same header file is included multiple times,
for example included by two different header files and both of them are included by the same .c
file. Without this three lines at the very top and the very bottom, gcc will report an error when
the same header file is included multiple times.

This header file is included by the student2.c

#include "student2.h"

Notice that we use double quotations for programmer-defined header files. For header files
provided by C, we use < and >, for example

#include <stdio.h>

Compiling this program requires nothing special.

> gcc student2.c -o student2

Notice that the header file does not appear in the command.

ECE264. updated on Thursday 3rd January, 2013 146 Please send corrections, comments, and
questions to yunglu@purdue.edu

9.2 Compile and Link

The previous section shows a program with one .h and one .c file. As programs become even
more complex, we need to use even more files for better organization. This example moves
printStudent into another .c file called student3.c. The main function is in another file
called student3main.c.

/* file: student3.h

*/
#ifndef STUDENT3_H
#define STUDENT3_H
#define NAME_LENGTH 50
typedef struct
{

char name[NAME_LENGTH];
int year;
float GPA;

} Student;
void printStudent(Student s);
#endif

/* file: student3.c
purpose: demonstrate how to write a program with 2 .c files

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "student3.h"

void printStudent(Student s)
{

printf("The student’s name is %s.\n", s.name);
switch (s.year)

{
case 1:

printf(" first-year.\n");
break;

case 2:
printf(" sophomore.\n");
break;

case 3:
printf(" junior.\n");
break;

case 4:

ECE264. updated on Thursday 3rd January, 2013 147 Please send corrections, comments, and
questions to yunglu@purdue.edu

printf(" senior.\n");
break;

}
printf(" GPA = %4.2f.\n", s.GPA);

}

/* file: student3main.c

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "student3.h"

int main(int argc, char * argv[])
{

Student s1;
strcpy(s1.name, "Amy Smith");
s1.year = 3;
s1.GPA = 3.6;
printStudent(s1);
return EXIT_SUCCESS;

}

In terms of functionality, this program is the same as the one in the previous section. How do
we compile the program? There are two ways. The first is a simple extension of the old way:

> gcc -Wall -Wshadow student3.c student3main.c -o student3

We simply put the names of both .c files after gcc. If the program needs three or more files,
put the names of all .c files after gcc.

The second way is composed of two two stages: compilation and linking. Compilation means
converting a source file into an object file. Linking takes the needed object files and creates an
executable program. Each .c file can be compiled separately. This is called separate compilation.

> gcc -Wall -Wshadow -c student3.c
> gcc -Wall -Wshadow -c student3main.c

These two commands generate object files: student3.o and student3main.o. The next
command links them to create an executable.

ECE264. updated on Thursday 3rd January, 2013 148 Please send corrections, comments, and
questions to yunglu@purdue.edu

> gcc student3.o student3main.o -o student3

The second way seems to be a lot of unnecessary trouble. Why does it even exist? If you mod-
ify only student3main.c without changing student3.c, the object file student3.o should
still be up-to-date. In this case, you do not have to compile student3.c again and recreate
student3.o. You need to compile student3main.c and link the object files. This can save a
lot of time if a program contains many .c files and you change only one of them— you need to
compile only the changed one and then link all object files.

9.3 Makefile

Even if you are convinced of the advantage of separate compilation, you are probably not excited
about typing

> gcc -Wall -Wshadow -o file1.c
> gcc -Wall -Wshadow -o file2.c
> gcc -Wall -Wshadow -o file3.c
...
> gcc file1.o file2.o file3.o ... -o program

every time you modify one or several files. Worse, if you want to take advantage of separate
compilation—compiling only the files that have been modified—you have to keep track which
object files are obsolete. You need to know which .c or .h files have been modified since the last
compilation. This is too much work. Fortunately, make in Linux can help. This command takes
an input file called Makefile. This section explains how to write simple Makefile.

The main purpose of Makefile is to decide which files need to be recompiled by comparing
the time of an object file and the relevant .c and .h files. If the object file is newer, the .c file is
not recompiled. If any of the relevant .c and .h files is newer, make generates a new object file.

The Makefile for the previous program is shown below

filename: Makefile
GCC = gcc -Wall -Wshadow

student3: student3.o student3main.o
$(GCC) student3.o student3main.o -o student3

student3.o: student3.c student3.h
$(GCC) -c student3.c

student3main.o: student3main.c student3.h
$(GCC) -c student3main.c

ECE264. updated on Thursday 3rd January, 2013 149 Please send corrections, comments, and
questions to yunglu@purdue.edu

The first line is a comment. In Makefile, anything after # is a comment. The next line defines
a symbol called GCC. It is the gcc command with warning messages enabled. We can use $(GCC)
later and it is replaced by gcc -Wall -Wshadow. Defining this symbol makes changes easier
later. For example, we can add -g to enable debugging. When the you are confident that the pro-
gram is working, you can replace -g -Wall -Wshadow by -O to enable compiler optimization.
This may make your program noticeably faster.

The next two lines

student3: student3.o student3main.o
$(GCC) student3.o student3main.o -o student3

mean, “The file student3 depends on two files student3.o and student3main.o. If ei-
ther file is new, execute the following command $(GCC) student3.o student3main.o -o
student3” namely,

gcc -Wall -Wshadow student3.o student3main.o -o student3

This is the linking command for creating the executable file student3.

Before $(GCC) is a tab, not space. This is a common problem in Makefile. How do you get
a tab? Hit the tab key (depending on the keyboard layout, the key is usually at the left side above
CAPS LOCK or CTRL).

How does make know whether student3.o or student3main.o is new? The next two lines
in Makefile

student3.o: student3.c student3.h
$(GCC) -c student3.c

mean, “student3.o depends on student3.c and student3.h. If either file is new, execute
the following command.”

gcc -Wall -Wshadow -c student3.c

Similarly, these two lines

student3main.o: student3main.c student3.h
$(GCC) -c student3main.c

ECE264. updated on Thursday 3rd January, 2013 150 Please send corrections, comments, and
questions to yunglu@purdue.edu

mean “student3main.o depends on student3main.c and student3.h. If either file is
new, execute the following command.”

gcc -Wall -Wshadow -c student3main.c

In Linux, if you type make, the following messages appear

> make
gcc -Wall -Wshadow -c student3.c
gcc -Wall -Wshadow -c student3main.c
gcc -Wall -Wshadow student3.o student3main.o -o student3

If we type make for the first time, student3.c and student3.h are both new (because
student3.o does not exist yet). Thus, make compiles student3.c. Also, student3main.c
and student3.h are new; thus, make compiles student3main.c. Now, both student3.o and
student3main.o are new and make links them to create student3.

If you type make again, the following message appears.

make: ‘student3’ is up to date.

Why? The file student3 depends on student3.o and student3main.o but the time of
these two files are earlier than the time of student3. Therefore, make knows student3 is up-to-
date.

Actually, make also checks whether student3.o is up-to-date by comparing its time
with the time of student3.c and student3.h. If student3.o is newer, make will not
recompile student3.c. Similarly, make checks whether student3main.o is newer than
student3main.c and student3.h.

If you change student3main.c and type make, this is what happens

gcc -Wall -Wshadow -c student3main.c
gcc -Wall -Wshadow student3.o student3main.o -o student3

Notice that student3.o is still up-to-date so student3.c is not recompiled.

If you change student3.h and type make, both object files will be regenerated because both
depend on student3.h. Then, the executable is generated from the new object files.

ECE264. updated on Thursday 3rd January, 2013 151 Please send corrections, comments, and
questions to yunglu@purdue.edu

9.4 Use Makefile for Testing

You can add more commands in Makefile so that you do not have to type frequently used long
commands over and over again. Section 5.8 mentions valgrind to detecting memory leak. We
can add an option in Makefile to invoke valgrind.

filename: Makefile
GCC = gcc -Wall -Wshadow

student3: student3.o student3main.o
$(GCC) student3.o student3main.o -o student3

student3.o: student3.c student3.h
$(GCC) -c student3.c

student3main.o: student3main.c student3.h
$(GCC) -c student3main.c

memory: student3
valgrind --leak-check=yes ./student3

Type

> make memory

The dependence first checks whether student3 needs to be recompiled. Then, the valgrind
command runs to check whether the program leaks memory. This is more convenient than typing
the long command every time.

You can extend this further. This program’s output is

The student’s name is Amy Smith.
junior.
GPA = 3.60.

You can save it in a file called expectedoutput and change Makefile as follows

filename: Makefile
GCC = gcc -Wall -Wshadow

student3: student3.o student3main.o
$(GCC) student3.o student3main.o -o student3

ECE264. updated on Thursday 3rd January, 2013 152 Please send corrections, comments, and
questions to yunglu@purdue.edu

student3.o: student3.c student3.h
$(GCC) -c student3.c

student3main.o: student3main.c student3.h
$(GCC) -c student3main.c

memory: student3
valgrind --leak-check=yes ./student3

test: student3
./student3 > newoutput
diff newoutput expectedout

If you type

> make test

The program will run and save the output in the file newoutput. Then, this file is compared
with expectedoutput. If the two files are the same, no error message occurs. If the two files are
different, you will see an error message.

You can combine memory and test into one as shown below

filename: Makefile
GCC = gcc -Wall -Wshadow

student3: student3.o student3main.o
$(GCC) student3.o student3main.o -o student3

student3.o: student3.c student3.h
$(GCC) -c student3.c

student3main.o: student3main.c student3.h
$(GCC) -c student3main.c

test: student3
./student3 > newoutput
diff newoutput expectedout
valgrind --leak-check=yes ./student3

When you type

> make test

The program’s output is compared with the expected output and valgrind checks whether
the program leaks memory.

ECE264. updated on Thursday 3rd January, 2013 153 Please send corrections, comments, and
questions to yunglu@purdue.edu

9.5 Practice Problems

1. Consider the list of files:

> ls
f1.c f1.h f2.c f2.h f3.c f3.h main.c Makefile

This is Makefile

GCC = gcc
CFLAGS = -Wall -Wshadow
OBJS = main.o f1.o f2.o
main: $(OBJS)

$(GCC) $(CFLAGS) $(OBJS) -o main

main.o: main.c f1.h f2.h
$(GCC) $(CFLAGS) -c main.c

f1.o: f1.h f1.c
$(GCC) $(CFLAGS) -c f1.c

f2.o: f2.h f2.c
$(GCC) $(CFLAGS) -c f2.c

clean:
rm -f *.o main

(a) What is the output on Terminal after you type

make clean
make

(b) If you modify f1.h, save it, and type make in Terminal, what is the output?

(c) If you modify f3.c, save it, and type make in Terminal, what is the output?

ECE264. updated on Thursday 3rd January, 2013 154 Please send corrections, comments, and
questions to yunglu@purdue.edu

Chapter 10

Dynamic Structures

We have seen two scenarios about memory allocation. The first is static allocation. The size is
known when a program is written. For example

int arr[100];

This creates an array with 100 elements.

In many cases, the size is unknown when the program is written but known after the program
starts. This is the second scenario. An example is shown below; the size is given by a user.

int * arr2;
int length;
scanf("%d", & length);
arr2 = malloc(length * sizeof(int));

This chapter describes how to handle the third scenario: the size is unknown even after the
program starts and memory is allocated and released based on needs. Imagine you are creating
a social network program. How many users will register? You certainly want to have millions
of users but you cannot control that. You cannot have a pre-determined number, say five million
users and reject registrations after there are already five million users. You cannot allocate a huge
amount of memory for, say a billion users, because that will waste too much money if they are
only two million users. Moreover, users may come and go. Some users register but forget their
passwords and create new accounts. You may want to remove accounts that have not been used
for more than one year. To manage this type of application, you need to allocate memory as needs
grow and release memory as needs shrink. This chapter describes how to use dynamic structures whose
sizes can grow or shrink based on needs. This chapter won’t be sufficient for you to build a social
network site but it is a starting point.

We want to create a structure that supports the following functions:

155

• insert: adding new data into the structure, allocating memory as needed.

• search: determining whether a piece of data is already in the structure.

• delete: removing data from the structure, releasing memory if it is no longer needed.

• print: print the data stored in the structure.

• destory: delete everything before the program ends.

10.1 Linked List

As the name suggests, a linked list is a list and the components are linked. A linked list has some
nodes. Each node is an object with two attributes.

• a pointer to another node. By convention, this attribute is called next. If one node has no
next node, the next attribute stores NULL.

• data. This attribute may be a pointer, an object, or a primitive type such as int or char.

10.1.1 Node

We will create a new structure that has two attributes. For simplicity, the data attribute is an
integer.

typedef struct listnode
{

struct listnode * next;
int value;

} Node;

This structure has two new concepts: (1) We give a temporary name to the structure,
listnode. This name is needed because (2) one attribute is a pointer to another object of the
same structure. We call this structure Node; listnode is used for only creating that attribute and
we will not use it any more. Why do we need listnode if it is used only once? This structure is
“self-refering”. Without listnode, gcc does not know the type of next. Also, next must be a
pointer. Since gcc has not seen the whole structure yet, gcc does not know how much memory
is needed. If next is a pointer, gcc knows next needs enough memory to store an address. We
use int as the type of the value. A linked list’s values can have any type: int, char, or even a
structure described in Chapter 7.

The following figure shows three views of the first operation for creating a linked list.

ECE264. updated on Thursday 3rd January, 2013 156 Please send corrections, comments, and
questions to yunglu@purdue.edu

Node * head = NULL;
symbol address value

head 200 NULL
head

(a) (b) (c)

Figure 10.1: A linked starts with no Node. This figure shows three views: (a) the source code view,
(b) illustration, and (c) stack memory. The illustration view is the most common in literature. The
three views are shows simultaneously so that you can understand how to write code and what
happens in computer’s memory. In (b), when a pointer’s value is NULL, it is common to make it
point to “Ground.”

10.1.2 Insert

The next figure shows how to create the very first Node and assign a number to the value at-
tribute of this Node. Calling malloc will allocate space in heap memory for the two attributes.
Suppose malloc returns address 60000. This value is assigned to the value of head. The next line

Node * head = NULL;

head = malloc(size(Node));

head -> next = NULL;

head -> value = 917;

symbol address value address value

head 200 60000 60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head
(b)

917

Figure 10.2: Creating a Node object whose value is 917.

head -> next = NULL;

assigns NULL to the first attribute of the newly created object’s first attribute. Then, we assign
917 to the second attribute:

head -> value = 917;

ECE264. updated on Thursday 3rd January, 2013 157 Please send corrections, comments, and
questions to yunglu@purdue.edu

We would like to create a function List insert that does three things: (1) allocating memory,
(2) assigning NULL to the next attribute, and (3) assigning an argument to the value attribute.
This function makes inserting Nodes easier: we need to call the function, insteading writing the
three statements over and over again.

Node * head = NULL;

head = List_insert(head, 917);

symbol address value address value

head 200 60000 60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head
(b)

917

Figure 10.3: Replacing the three lines by using List insert.

ECE264. updated on Thursday 3rd January, 2013 158 Please send corrections, comments, and
questions to yunglu@purdue.edu

If we call List insert one more time with -504 as the argument, one more Node object is
created and it is inserted at the beginning of the list. Please notice that the value stored at head has
changed. Also, there is no guarantee that calling malloc twice will obtain consecutive addresses.
Thus, we assume there is a gap between the two Node objects.

Node * head = NULL;

head = List_insert(head, 917);

head = List_insert(head, -504);

symbol address value address value

head 200 75000 75001 -504

75000 60000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head
(b)

917 -504

Figure 10.4: Calling List insert again to insert another Node object.

ECE264. updated on Thursday 3rd January, 2013 159 Please send corrections, comments, and
questions to yunglu@purdue.edu

Next, we call List insert again with 326 as the argument. A new Node object is created and
it is inserted at the beginning of the list. The value stored at head changes again. We assume there
is a gap between this new object and the other two existing objects.

Node * head = NULL;

head = List_insert(head, 917);

head = List_insert(head, -504);

head = List_insert(head, 326);

symbol address value address value

head 200 83000 83001 326

83000 75000

75001 -504

75000 60000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head
(b)

917 -504 326

Figure 10.5: Insert the third object by calling List insert again.

ECE264. updated on Thursday 3rd January, 2013 160 Please send corrections, comments, and
questions to yunglu@purdue.edu

10.1.3 Delete

We want to create a function, List delete. This function deletes the Node object whose value
is the same as the argument. Suppose we want to delete the second Node object. After calling
List delete, the first and the third objects remain in the linked list. Please notice that the first
Node object’s next attribute points to the original third Node object (now the second). This ensure
that the object is still reachable from the head.

Node * head = NULL;

head = List_insert(head, 917);

head = List_insert(head, -504);

head = List_insert(head, 326);

head = List_delete(head, -504);

symbol address value address value

head 200 83000 83001 326

83000 60000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head
(b)

917 326

Figure 10.6: Insert the third object by calling List insert again.

ECE264. updated on Thursday 3rd January, 2013 161 Please send corrections, comments, and
questions to yunglu@purdue.edu

How do we implement List delete? First, we create a new pointer p and make its value the
same as head’s value. We have to keep the head’s value. If we change head’s value, we lose the whole
linked list.

Node * p;

p = head;

symbol address value address value

p 201 83000 83001 326

head 200 83000 83000 75000

75001 -504

75000 60000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head
(b)

917 -504 326

p

Figure 10.7: To delete a Node object, we create a new pointer p. Its value is the same as head’s
value.

ECE264. updated on Thursday 3rd January, 2013 162 Please send corrections, comments, and
questions to yunglu@purdue.edu

Next, we create another pointer q and its value is p->next.

Node * p;

p = head;

Node * q;

q = p -> next;

symbol address value address value

q 202 75000 83001 326

p 201 83000 83000 75000

head 200 83000

75001 -504

75000 60000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head (b)

917 -504 326

p

q

Figure 10.8: We create another pointer q; its value is the same as p->next.

ECE264. updated on Thursday 3rd January, 2013 163 Please send corrections, comments, and
questions to yunglu@purdue.edu

Then, we change p->next to q->next. This bypasses the object that is about to be deleted.

Node * p;

p = head;

Node * q;

q = p -> next;

p -> next = q -> next;

symbol address value address value

q 202 75000 83001 326

p 201 83000 83000 60000

head 200 83000

75001 -504

75000 60000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head (b)

917 -504 326

p

q

Figure 10.9: Modify p->next and bypass the node that is about to be deleted.

ECE264. updated on Thursday 3rd January, 2013 164 Please send corrections, comments, and
questions to yunglu@purdue.edu

Finally, we release the memory pointed by q.

Node * p;

p = head;

Node * q;

q = p -> next;

p -> next = q -> next;

free (q);

symbol address value address value

q 202 - 83001 326

p 201 83000 83000 60000

head 200 83000

60001 917

60000 NULL

Call Stack Heap Memory

(a)

(c)

head (b)

917 326

p

q

Figure 10.10: Release the memory pointed by q.

10.1.4 C Program

We are ready to show the the code for implementing linked list. The code reflects what is shown
in the figures.

/*
file: list.h

*/
#ifndef LIST_H
#define LIST_H
typedef struct listnode
{

struct listnode * next;
int value;

} Node;

Node * List_insert(Node * head, int v);
/* insert a value v to a linked list starting with head, return the

new head */

Node * List_search(Node * head, int v);
/* search a value in a linked list starting with head, return the node

ECE264. updated on Thursday 3rd January, 2013 165 Please send corrections, comments, and
questions to yunglu@purdue.edu

whose value is v, or NULL if no such node exists */

Node * List_delete(Node * head, int v);
/* delete the node whose value is v in a linked list starting with

head, return the head of the remaining list, or NULL if the list is
empty */

void List_destroy(Node * head);
/* delete every node */

void List_print(Node * head);
/* print the values stored in the linked list */
#endif

/*
file: list.c

*/
#include "list.h"
#include <stdio.h>
#include <stdlib.h>
static Node * Node_construct(int v)
/*
A static function can be called by functions only in this file.
Functions outside this file cannot call it.

*/
{

Node * n = malloc(sizeof(Node));
n -> value = v;
n -> next = NULL;
return n;

}

Node * List_insert(Node * head, int v)
{

printf("insert %d\n", v);
Node * p = Node_construct(v);
p -> next = head;
return p; /* insert at the beginning */

}

Node * List_search(Node * head, int v)
{

Node * p = head;
while (p != NULL)

ECE264. updated on Thursday 3rd January, 2013 166 Please send corrections, comments, and
questions to yunglu@purdue.edu

{
if ((p -> value) == v)

{
return p;

}
p = p -> next;

}
return p;

}

Node * List_delete(Node * head, int v)
{

printf("delete %d\n", v);
Node * p = head;
if (p == NULL) /* empty list, do nothing */
{

return p;
}

/* delete the first node (i.e. head node)? */
if ((p -> value) == v)

{
p = p -> next;
free (head);
return p;

}

/* not deleting the first node */

Node * q = p -> next;
while ((q != NULL) && ((q -> value) != v))

{
/* must check whether q is NULL

before checking q -> value */
p = p -> next;
q = q -> next;

}
if (q != NULL)

{
/* find a node whose value is v */
p -> next = q -> next;
free (q);

}
return head;

}

ECE264. updated on Thursday 3rd January, 2013 167 Please send corrections, comments, and
questions to yunglu@purdue.edu

void List_destroy(Node * head)
{

while (head != NULL)
{

Node * p = head -> next;
free (head);
head = p;

}
}

void List_print(Node * head)
{

printf("\nPrint the whole list:\n");
while (head != NULL)

{
printf("%d ", head -> value);
head = head -> next;

}
printf("\n\n");

}

The function Node construct is static. This means the function can be called by another
function inside the same file. A static function is invisible outside this file.

We need to pay special attention when deleting the very first Node, i.e., the head. In
List delete, we first check whether the list is empty. If it is empty, there is nothing to delete
and the function returns immediately. Next, we check whether the first Node’s value is the same
as the value to delete. If so, the list’s head is changed to the second Node. It is possible that the list
has only one Node. In this case, head -> next is NULL. After deleting the first Node, the list is
empty. If the first Node is not deleted, we continue to check whether any Node should be deleted
by checking

while ((q != NULL) && ((q -> value) != v))

This checks whether a Node’s value is the same as the input argument v. We use a feature in
C language called short-circuit. If q is NULL, the condition is false and the second part q->value
is not checked.

The following code shows how to use a linked list.

/*
file: listmain.c

*/
#include "list.h"
#include <stdlib.h>

ECE264. updated on Thursday 3rd January, 2013 168 Please send corrections, comments, and
questions to yunglu@purdue.edu

#include <stdio.h>
int main(int argc, char * argv[])
{

Node * head = NULL; /* must initialize it to NULL */
head = List_insert(head, 917);
head = List_insert(head, -504);
head = List_insert(head, 326);
List_print(head);
head = List_delete(head, -504);
List_print(head);
head = List_insert(head, 138);
head = List_insert(head, -64);
head = List_insert(head, 263);
List_print(head);

if (List_search(head, 138) != NULL)
{

printf("138 is in the list\n");
}

else
{

printf("138 is not in the list\n");
}

if (List_search(head, 987) != NULL)
{

printf("987 is in the list\n");
}

else
{

printf("987 is not in the list\n");
}

/* delete the first Node */
head = List_delete(head, 263);
List_print(head);

/* delete the last Node */
head = List_delete(head, 917);
List_print(head);

/* delete all Nodes */
List_destroy(head);
return EXIT_SUCCESS;

ECE264. updated on Thursday 3rd January, 2013 169 Please send corrections, comments, and
questions to yunglu@purdue.edu

}

The output of this program is shown below

insert 917
insert -504
insert 326

Print the whole list:
326 -504 917

delete -504

Print the whole list:
326 917

insert 138
insert -64
insert 263

Print the whole list:
263 -64 138 326 917

138 is in the list
987 is not in the list
delete 263

Print the whole list:
-64 138 326 917

delete 917

Print the whole list:
-64 138 326

ECE264. updated on Thursday 3rd January, 2013 170 Please send corrections, comments, and
questions to yunglu@purdue.edu

10.2 Binary Tree

In a linked list, each Node has only one link (next). It is certainly possible for each Node to have
two links. With two links, we can create new dynamic structures. Two commonly used are

• doubly linked list. Each Node has two links called previous and next. If p -> next is q,
then q -> previous is p. When we explain linked lists earlier, we always have to start
from head and move in only one direction following the next attributes. A doubly linked
list allows us to move in either direction. We will not discuss doubly linked lists further in
this book.

• binary tree. Each Node has two links called left and right. A binary tree is different from
a doubly linked list because the two links are unrelated.

You can certainly create a new structure in which each object has three or more links. We will
not discuss those structures here. This section focuses on binary trees, in particular, binary search
tree. A binary search tree satisfies the following conditions:

• If q is p -> left, then p -> value is larger than q -> value. We say that q is p’s left
child and p is q’s parent. By convention, we use parent instead of father or mother.

• If r is p -> right , then p -> value is smaller than r -> value. We say that r is p’s
right child and p is r’s parent.

If a node has both children, i.e. neither q nor r is NULL, we say that q and r are silbings. If a
node has no child, we call it a leaf node.

10.2.1 Node

Let’s see the header file for a binary search tree:

/*
file: tree.h

*/
#include <stdio.h>

#ifndef TREE_H
#define TREE_H
typedef struct treenode
{

struct treenode * left;
struct treenode * right;
int value;

} TreeNode;

ECE264. updated on Thursday 3rd January, 2013 171 Please send corrections, comments, and
questions to yunglu@purdue.edu

TreeNode * Tree_insert(TreeNode * root, int v);
/* insert a value v to a binary search tree starting with root, return

the new root */

TreeNode * Tree_search(TreeNode * root, int v);
/* search a value in a binary search tree starting with root, return

the node whose value is v, or NULL if no such node exists */

TreeNode * Tree_delete(TreeNode * root, int v);
/* delete the node whose value is v in a binary search tree starting

with root, return the root of the remaining tree, or NULL if the
tree is empty */

void TreeNode_print(TreeNode * n);
/* print the value of one node */

void Tree_print(TreeNode * root);
/* print the values stored in the binary search tree */

void Tree_destruct(TreeNode * root);
/* delete every node */
#endif

A binary search tree has similiar functionalities as a linked list. Both structures support insert,
search, and delete. The differences are the internal organizations and more important the efficiency.
We will take the same approach as in the previous section by presenting the three views of a binary
search tree.

First, we create an empty tree so this is the same as Figure 10.1. The starting point of a binary
three is called root instead of head.

Node * root = NULL;
symbol address value

root 200 NULL
root

(a) (b) (c)

Figure 10.11: An empty tree has one pointer called root and its value is NULL.

10.2.2 Insert

Next, we create the first tree Node.

ECE264. updated on Thursday 3rd January, 2013 172 Please send corrections, comments, and
questions to yunglu@purdue.edu

Node * root = NULL;

root = malloc(size(Node));

root -> left = NULL;

root -> right = NULL;

root -> value = 917;

symbol address value address value

root 200 60000 60002 917

60001 NULL

60000 NULL

Call Stack Heap Memory

(a)

(c)

root

(b)
917

Figure 10.12: A binary tree with only one Node. Both left and right are NULL. This node is the
root because it has no parent. It is also a leaf node because it has no child.

We create a function Tree insert. This figure shows the tree after inserting two Nodes. Since
-504 is smaller than 917, the second Node is on the left size of the first Node. This is an important
property of a binary search tree. Also, the root’s value does not change after we insert a new
Node. In this example, the value remains 60000.

ECE264. updated on Thursday 3rd January, 2013 173 Please send corrections, comments, and
questions to yunglu@purdue.edu

Node * root = NULL;

root = List_insert(root, 917);

root = List_insert(root, -504);

symbol address value address value

root 200 60000 75002 -504

75001 NULL

75000 NULL

60002 917

60001 NULL

60000 75000

Call Stack Heap Memory

(a)

(c)

root
(b)

917

-504

Figure 10.13: A binary tree with two Nodes. The node with value 917 is still the root; it is no
longer a leaf node because it has one child. The node with value -504 is a leaf node because it has
no child.

Another Node is inserted. The value is 1226 and it is larger than 917; thus, it is at the right side
of the first Node.

ECE264. updated on Thursday 3rd January, 2013 174 Please send corrections, comments, and
questions to yunglu@purdue.edu

Node * head = NULL;

head = List_insert(head, 917);

head = List_insert(head, -504);

head = List_insert(head, 1226);

symbol address value address value

head 200 60000 86002 1226

86001 NULL

86000 NULL

75002 -504

75001 NULL

75000 NULL

60002 917

60001 86000

60000 75000

Call Stack Heap Memory

(a)

(c)

(b) root 917

-504

1226

Figure 10.14: A binary tree with three Nodes.

The following figure shows a tree with five Nodes. The second view in (b) becomes compli-
cated; the memory view is also getting quite long. Thus, we create another representation of a
tree, as shown in Figure 10.15. In this view, each Node is represented as a circle. In computing,
when we draw a “tree”, the root is at the top. This is different from the trees you see in a forest.

ECE264. updated on Thursday 3rd January, 2013 175 Please send corrections, comments, and
questions to yunglu@purdue.edu

Node * head = NULL;

head = List_insert(head, 917);

head = List_insert(head, -504);

head = List_insert(head, 1226);

head = List_insert(head, 73);

head = List_insert(head, 1085);

(a)

(d)

(b)

root 917

-504

1226

73
1085

root

917

-504

73

1226

1085

Figure 10.15: A binary tree with five Nodes. We create a new view (d) to simplify the representa-
tion of a tree.

The values -504 and 73 are smaller than the value at root so both Nodes are at the left side
of root. Because 73 is larger than -504, 73 is at the right side of -504. Binary search tree has an
important property:

For any Node whose value is v, all Nodes on the left side have values
smaller than v; all Nodes on the right side have values larger than v.

The following shows the functions for implementing Tree insert.

#include "tree.h"
#include <stdlib.h>
static TreeNode * TreeNode_construct(int v)
{

TreeNode * n;
n = malloc(sizeof(TreeNode));
n -> left = NULL;
n -> right = NULL;
n -> value = v;
return n;

}

TreeNode * Tree_insert(TreeNode * n, int v)

ECE264. updated on Thursday 3rd January, 2013 176 Please send corrections, comments, and
questions to yunglu@purdue.edu

{
if (n == NULL)

{
/* tree is empty, create the first node in the tree */
return TreeNode_construct(v);

}
/* tree is not empty, find the correct location to insert the node */
if (v == (n -> value))

{
/* value already stored in the tree */
return n;

}
if (v < (n -> value))

{
n -> left = Tree_insert(n -> left, v);

}
else

{
n -> right = Tree_insert(n -> right, v);

}
return n;

}

10.2.3 Search

Now, we can understand why it is called a binary search tree. If we want to find whether a number
is stored in the tree. We first compare this number with the value stored at root. If the two values
are the same, we know this value is stored in the tree. If the number is greater than the value
stored at root, we know that it is impossible to find the value on the left side of tree. We can
apply this property recursively until either (1) we find it somewhere in the tree or (2) we know the
number is not stored in the tree. How can a binary search tree can be more efficient than a linked
list? If the left side and the right side of root have the same number of Nodes, after only one
comparison with the root’s value, we can discard half of the Nodes and choose only one side for
the next comparison. The following shows how to implement Tree search.

/*
file: treesearch.c

*/
#include "tree.h"
TreeNode * Tree_search(TreeNode * n, int v)
{

if (n == NULL)
{

/* cannot find */
return NULL;

ECE264. updated on Thursday 3rd January, 2013 177 Please send corrections, comments, and
questions to yunglu@purdue.edu

}
if (v == (n -> value))

{
/* found */
return n;

}
if (v < (n -> value))

{
/* search the left side */
return Tree_search(n -> left, v);

}
return Tree_search(n -> right, v);

}

10.2.4 Print

Tree print can be implemented in different ways. The function has three steps: (1) visiting the
Node’s left side, (2) visiting the Node’s right side, and (3) printing the Node’s value. There are
3! = 6 ways to order these three steps but (1) usually precedes (2). Thus, we have only three ways
to implement Tree print:

• pre-order. The three steps are ordered as (3) - (1) - (2).
• in-order. The three steps are ordered as (1) - (3) - (2).
• post-order. The three steps are ordered as (1) - (2) - (3).

The Tree print function calls all three orders to show the difference.

#include "tree.h"

void TreeNode_print(TreeNode * n)
{

printf("%d ", n -> value);
}

static void Tree_printPreorder(TreeNode * n)
{

if (n == NULL)
{

return;
}

TreeNode_print(n);
Tree_printPreorder(n -> left);
Tree_printPreorder(n -> right);

}

ECE264. updated on Thursday 3rd January, 2013 178 Please send corrections, comments, and
questions to yunglu@purdue.edu

static void Tree_printInorder(TreeNode * n)
{

if (n == NULL)
{

return;
}

Tree_printInorder(n -> left);
TreeNode_print(n);
Tree_printInorder(n -> right);

}

static void Tree_printPostorder(TreeNode * n)
{

if (n == NULL)
{

return;
}

Tree_printPostorder(n -> left);
Tree_printPostorder(n -> right);
TreeNode_print(n);

}

void Tree_print(TreeNode * n)
{

printf("\n\n=====Preorder=====\n");
Tree_printPreorder(n);
printf("\n\n=====Inorder=====\n");
Tree_printInorder(n);
printf("\n\n=====Postorder=====\n");
Tree_printPostorder(n);
printf("\n\n");

}

10.2.5 Delete

Deleting a node in a binary search tree is more complex because we have to maintain the tree’s
properties described on page 176. When deleting a node, we have to consider different scenarios:

1. If this node has no child, release the memory occupied by this node. Figure 10.16 illustrates
this scenario.

2. If this node has only one child, make this node’s parent point to this node’s child and release
the memory occupied by this node. Figure 10.17 illustrates this scenario.

ECE264. updated on Thursday 3rd January, 2013 179 Please send corrections, comments, and
questions to yunglu@purdue.edu

3. If this node has two children, find this node’s successor. The successor is the node that
appears immediately after this node in in-order traversal. The successor must be on the right
side of this node. Exchange the values of this node and the successor. Delete the successor.
Figure 10.18 illustrates this scenario. The successor must not have the left child; otherwise,
it cannot be the successor.

The following figures show the three scenarios.

(a)

(b)

Figure 10.16: (a) The original binary search tree. (b) Deleting the node “5”. This node has no child.

Figure 10.17: Deleting the node “14”. This node has one child.

ECE264. updated on Thursday 3rd January, 2013 180 Please send corrections, comments, and
questions to yunglu@purdue.edu

(a)

(b)

Figure 10.18: Deleting the node “8”. The node has two children. (a) Exchange the values of this
node and its successor. (b) Deleting the successor.

The following code implements the delete function. Please notice that this function is recur-
sive.

/*
* file: treedelete.c

*/
#include "tree.h"
#include <stdlib.h>
TreeNode * Tree_delete(TreeNode * tn, int val)
{

if (tn == NULL) { return NULL; }
if (val < (tn -> value))

{
tn -> left = Tree_delete(tn -> left, val);
return tn;

}
if (val > (tn -> value))

{
tn -> right = Tree_delete(tn -> right, val);
return tn;

}
/* v is the same as tn -> value */
if (((tn -> left) == NULL) && ((tn -> right) == NULL))

{

ECE264. updated on Thursday 3rd January, 2013 181 Please send corrections, comments, and
questions to yunglu@purdue.edu

/* r has no child */
free (tn);
return NULL;

}
if ((tn -> left) == NULL)

{
/* tn -> right must not be NULL */
TreeNode * rc = tn -> right;
free (tn);
return rc;

}
if ((tn -> right) == NULL)

{
/* tn -> left must not be NULL */
TreeNode * lc = tn -> left;
free (tn);
return lc;

}
/* r have two children */
/* find the immediate successor */
TreeNode * su = tn -> right; /* su must not be NULL */
while ((su -> left) != NULL)

{
su = su -> left;

}
/* su is r’s immediate successor */
/* swap their values */
tn -> value = su -> value;
su -> value = val;
/* delete su */
tn -> right = Tree_delete(tn -> right, val);
return tn;

}

10.2.6 Iterator

In many cases, we want to go through every node in a binary tree. but we do not need to know
the details. For example, we want to add the values stored in the tree. Since a+ b = b+ a, it does
not matter which node is the first and which is the last. Another application counts the number of
nodes whose values are greater than a given threshold. We need to visit every node once and only
once but we do not need to know whether one particular node is the parent of another particular
node. For this type of applications, an iterator can be helpful. Some languages, such as Perl,
provide foreach as a way to invoke an iterator. C++ and Java have built-in iterators for some

ECE264. updated on Thursday 3rd January, 2013 182 Please send corrections, comments, and
questions to yunglu@purdue.edu

classes (these are often called container classes). C does not provide foreach nor container classes;
we have to implement iterators ourselves. An iterator needs to support at least these functions:

• construct: create an iterator.

• hasNext: return 1 if some elements have not been visited; return 0 if all elements have been
visited.

• visitNext: go to the next element. This is usually called when hasNext return 1.

• destruct: release all memory occupied by an iterator. This should always be called after an
iterator has been created.

A tree iterator contains an object and a linked list. The object has three pointers for the head,
the current, and the tail of the linked list. Each node of the linked list has a pointer for one node in
the binary tree. Figure 10.19 shows the iterator after calling TreeIterator construct. There
is only one node in the linked list and this node’s treenode points to the tree’s root, as shown by
the dash arrow. The iterator’s three attributes point to the only node in the linked list.

Iterator

head current tail

IteratorInternal

treenode next

Figure 10.19: The iterator after calling TreeIterator construct.

ECE264. updated on Thursday 3rd January, 2013 183 Please send corrections, comments, and
questions to yunglu@purdue.edu

Calling TreeIterator visitNext performs the following tasks:

• If the currently pointed binary tree node has one or both children, the child (or children) is
inserted into the tail of the linked list.

• The iterator’s current moves to the next node in the linked list. This is illustrated in Fig-
ure 10.20.

Iterator

head current tail

IteratorInternal

treenode next

IteratorInternal

treenode next

IteratorInternal

treenode next

Figure 10.20: The linked has three nodes after calling TreeIterator visitNext because the
root’s two children are also inserted.

Calling TreeIterator destruct releases the memory occupied by the linked list and the
iterator itself. If an iterator is created by calling TreeIterator construct, the memory occu-
pied by this iterator must be released by calling TreeIterator destruct.

When TreeIterator visitNext is called, at most two nodes (the child or children of the
binary tree node pointed by current) are added to the end of the linked list. Is it possible to create
the complete list pointing to every node in the binary tree when TreeIterator construct?
The answer is yes but it is undesirable. Why? Because in many cases, we do not have to visit every
node in a binary three. For example, if we want to know whether the tree stores a value greater
than 381, we can stop after we find a node whose value is greater than 381. It is unnecessary to
build the whole linked list at the beginning. If the binary tree contains many nodes, building the
complete linked list takes too long.

The following shows how to implement an iterator for a binary tree.

#ifndef ITERATORINTERNAL_H
#define ITERATORINTERNAL_H
#include "tree.h"
/*

ECE264. updated on Thursday 3rd January, 2013 184 Please send corrections, comments, and
questions to yunglu@purdue.edu

* should be included by treeiterator.h only

*/
typedef struct iteratornode1
{

struct iteratornode1 * next;
TreeNode * treenode;

} IteratorInternal;
#endif

#ifndef TREEITERATOR_H
#define TREEITERATOR_H
#include "tree.h"
#include "iteratorinternal.h"
typedef struct iteratornode2
{

IteratorInternal * head;
IteratorInternal * current;
IteratorInternal * tail;

} TreeIterator;

TreeIterator * TreeIterator_construct(TreeNode * root);
int TreeIterator_hasNext(TreeIterator * iterator);
TreeNode * TreeIterator_visitNext(TreeIterator * iterator);
void TreeIterator_destruct(TreeIterator * iterator);
#endif

/*
* file: treeiterator.c

*/
#include "tree.h"
#include "treeiterator.h"
#include <stdlib.h>
#include <stdio.h>
static IteratorInternal * IteratorInternal_construct(TreeNode * p)
{

IteratorInternal * internal = malloc(sizeof(IteratorInternal));
internal -> treenode = p;
internal -> next = NULL;
return internal;

}

TreeIterator * TreeIterator_construct(TreeNode * p)

ECE264. updated on Thursday 3rd January, 2013 185 Please send corrections, comments, and
questions to yunglu@purdue.edu

{
TreeIterator * iter = malloc(sizeof(TreeIterator));
IteratorInternal * internal = IteratorInternal_construct(p);
iter -> head = internal;
iter -> current = internal;
iter -> tail = internal;
return iter;

}

int TreeIterator_hasNext(TreeIterator * iter)
{

return ((iter -> current) != NULL);
}

static void TreeIterator_insert(TreeIterator * iter)
{

TreeNode * tailnode = (iter -> tail) -> treenode;
if ((tailnode -> left) != NULL)
{

IteratorInternal * internal =
IteratorInternal_construct(tailnode -> left);

(iter -> tail) -> next = internal;
iter -> tail = internal;

}

if ((tailnode -> right) != NULL)
{

IteratorInternal * internal =
IteratorInternal_construct(tailnode -> right);

(iter -> tail) -> next = internal;
iter -> tail = internal;

}
}

TreeNode * TreeIterator_visitNext(TreeIterator * iter)
{

if (TreeIterator_hasNext(iter) == 0)
{

return NULL;
}

TreeNode * treenode = (iter -> current) -> treenode;
TreeIterator_insert(iter);
iter -> current = (iter -> current) -> next;
return treenode;

}

ECE264. updated on Thursday 3rd January, 2013 186 Please send corrections, comments, and
questions to yunglu@purdue.edu

void TreeIterator_destruct(TreeIterator * iterator)
{

IteratorInternal * internal = iterator -> head;
while (internal != NULL)
{

IteratorInternal * curr = internal;
internal = internal -> next;
free (curr);

}
free (iterator);

}

10.2.7 Destruct

The Tree destruct function destroys the whole tree by releasing the memory occupied by all
Nodes.

#include "tree.h"
#include <stdlib.h>
void Tree_destruct(TreeNode * n)
{

if (n == NULL)
{

return;
}

Tree_destruct(n -> left);
Tree_destruct(n -> right);
free(n);

}

Notice that both left and right must be destroyed before this Node’s memory is released.

10.2.8 main

Finally, this shows the main function:

#include "tree.h"
#include "treeiterator.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
void visitTree(TreeNode * root)

ECE264. updated on Thursday 3rd January, 2013 187 Please send corrections, comments, and
questions to yunglu@purdue.edu

{
printf("----------Iterator-------------");
TreeIterator * iterator = TreeIterator_construct(root);
while (TreeIterator_hasNext(iterator))

{
TreeNode * n = TreeIterator_visitNext(iterator);
TreeNode_print(n);

}
printf("\n\n");
TreeIterator_destruct(iterator);

}
int main(int argc, char * argv[])
{

TreeNode * root = NULL;
int num = 0;
int iter;
unsigned int seed = time(NULL);
seed = 0;
srand(seed);
if (argc >= 2)
{

num = (int) strtol(argv[1], NULL, 10);
}

if (num < 8)
{

num = 8;
}

int * array = malloc(sizeof(int) * num);
for (iter = 0; iter < num; iter ++)

{
array[iter] = rand() % 10000;

}
for (iter = 0; iter < num; iter ++)

{
int val = array[iter];
printf("insert %d\n", val);
root = Tree_insert(root, val);
Tree_print(root);

}
visitTree(root);
for (iter = 0; iter < num; iter ++)

{
int index = rand() % (2 * num);
if (index < num)

{

ECE264. updated on Thursday 3rd January, 2013 188 Please send corrections, comments, and
questions to yunglu@purdue.edu

int val = array[index];
printf("delete %d\n", val);
root = Tree_delete(root, val);
Tree_print(root);

}
}

Tree_destruct(root);
free (array);
return EXIT_SUCCESS;

}

10.2.9 Makefile

The program for the binary tree now has quite a few .h and .c files for implementing the different
functions. We will explain new techniques that can simply Makefile. If you have forgotten
Makefile, please review Section 9.3. In Section 9.3, Makefile lists the object files as well as the
corresponding .c and .h files. For example,

student.o: student.c student3.h
$(GCC) -c student.c

This is acceptable if there are only a few files. When the number of files increases, listing all
object files and the dependent header files becomes tedious. One solution uses Makefile’s sym-
bolic conversion. We list only the .c files and tell make to automatically find the corresponding
object files. The following lines can do the work:

SRCS = treemain.c treesearch.c treedestruct.c treeinsert.c \
treeprint.c treedelete.c treeiterator.c

OBJS = $(SRCS:%.c=%.o)

The lines tell make that there are seven source .c files. The second line tells make that each .c
file should have a corresponding object .o files.

The following two lines tell make how to generate an object file from the corresponding source
file.

.c.o:
$(GCC) -c $*.c

This rule, however, does not specify the dependence of header files. There is another com-
mand, called makedepend, to do this job. To use this command, simply put the following two
lines in Makefile.

ECE264. updated on Thursday 3rd January, 2013 189 Please send corrections, comments, and
questions to yunglu@purdue.edu

headers:
makedepend $(SRCS)

The command makedepend will check which header files are included in the source files and
write the dependences at the bottom of Makefile. When we type

make headers

the makedepend command generates something like the following:

DO NOT DELETE

treemain.o: tree.h /usr/include/stdio.h /usr/include/features.h
treemain.o: /usr/include/bits/predefs.h /usr/include/sys/cdefs.h
treemain.o: /usr/include/bits/wordsize.h /usr/include/gnu/stubs.h
treemain.o: /usr/include/gnu/stubs-64.h /usr/include/bits/types.h
treemain.o: /usr/include/bits/typesizes.h /usr/include/libio.h

This means treemain.o depends on these .h files. If any of these .h files changes,
treemain.c should be recompiled.

To summarize, this section explains two techniques simplifying Makefile. We can list source
files and use symbols to automatically generate the list of object files. We can use makedepend to
generate the list of header files; changing any of these header files triggers recompilation.

The following is our new Makefile for binary search trees.

CFLAGS = -g -Wall -Wshadow
GCC = gcc $(CFLAGS)
SRCS = treemain.c treesearch.c treedestruct.c treeinsert.c treeprint.c \

treedelete.c treeiterator.c
OBJS = $(SRCS:%.c=%.o)

tree: $(OBJS)
$(GCC) $(OBJS) -o tree

memory: tree
valgrind --leak-check=yes --verbose ./tree 10

.c.o:
$(GCC) $(CFLAGS) -c $*.c

clean:
rm -f *.o a.out tree

ECE264. updated on Thursday 3rd January, 2013 190 Please send corrections, comments, and
questions to yunglu@purdue.edu

headers:
makedepend $(SRCS)

DO NOT DELETE

treemain.o: tree.h /usr/include/stdio.h /usr/include/features.h
treemain.o: /usr/include/libio.h /usr/include/_G_config.h
treemain.o: /usr/include/wchar.h /usr/include/xlocale.h treeiterator.h
treemain.o: iteratorinternal.h /usr/include/time.h /usr/include/stdlib.h
treemain.o: /usr/include/alloca.h
treesearch.o: tree.h /usr/include/stdio.h /usr/include/features.h
treesearch.o: /usr/include/libio.h /usr/include/_G_config.h
treesearch.o: /usr/include/wchar.h /usr/include/xlocale.h
treedestruct.o: tree.h /usr/include/stdio.h /usr/include/features.h
treedestruct.o: /usr/include/libio.h /usr/include/_G_config.h
treedestruct.o: /usr/include/wchar.h /usr/include/xlocale.h
treedestruct.o: /usr/include/stdlib.h /usr/include/alloca.h
treeinsert.o: tree.h /usr/include/stdio.h /usr/include/features.h
treeinsert.o: /usr/include/libio.h /usr/include/_G_config.h
treeinsert.o: /usr/include/wchar.h /usr/include/xlocale.h
treeinsert.o: /usr/include/stdlib.h /usr/include/alloca.h
treeprint.o: tree.h /usr/include/stdio.h /usr/include/features.h
treeprint.o: /usr/include/libio.h /usr/include/_G_config.h
treeprint.o: /usr/include/wchar.h /usr/include/xlocale.h
treedelete.o: tree.h /usr/include/stdio.h /usr/include/features.h
treedelete.o: /usr/include/libio.h /usr/include/_G_config.h
treedelete.o: /usr/include/wchar.h /usr/include/xlocale.h
treedelete.o: /usr/include/stdlib.h /usr/include/alloca.h
treeiterator.o: tree.h /usr/include/stdio.h /usr/include/features.h
treeiterator.o: /usr/include/libio.h /usr/include/_G_config.h
treeiterator.o: /usr/include/wchar.h /usr/include/xlocale.h treeiterator.h
treeiterator.o: iteratorinternal.h /usr/include/stdlib.h
treeiterator.o: /usr/include/alloca.h

10.3 Practice Problems

1. Modify the linked list program so that the most recently added Node object is at the end of
the list. In other words, the new Node is the farthest from head.

2. Modify the linked list program so that the values stored in the list are unique. In other
words, if p and q are two different Nodes, p->value must be different from q->value.

3. Modify the linked list program so that the values are sorted. In other words, if p is before q,
p -> value must be smaller than q->value.

4. Suppose a linked has n Nodes and the values are not sorted. How many Nodes will
List search check if v is not stored in the list?

ECE264. updated on Thursday 3rd January, 2013 191 Please send corrections, comments, and
questions to yunglu@purdue.edu

5. Draw a binary search tree that has a special property: the outputs are the same for pre-
order, in-order, and post-order. Please remember that in a binary search tree, the nodes store
distinct values.

ECE264. updated on Thursday 3rd January, 2013 192 Please send corrections, comments, and
questions to yunglu@purdue.edu

Chapter 11

More Practice Problems

11.1 Anagrams

11.1.1 Distinct Letters

Write a program that can print the anagrams of a word. An anagram of a word is a word that uses
exactly all of the letters of the original word, but in a different order. For example, the anagrams
of the word ”the” are ”teh”, ”eth”, ”eht”, ”het”, and ”hte”. You can assume that the letters in
the word are distinct. For example, do not worry about a word like “color” because the letter ’o’
appears twice.

11.1.2 Unique Words

Modify the program to handle repeated letters: One or more letters in the word may appear
multiple times. For example, the letter ’o’ appears twice in the word “color”. Your program must
print the same anagram only once.

11.2 Integer Partition

11.2.1 All Partitions

Write a program to print all partitions of a positive integer. For example, if the input is 3, the
program prints

193

[1 1 1]
[1 2]
[2 1]
[3]

If the input is 4, the program prints

[1 1 1 1]
[1 1 2]
[1 2 1]
[1 3]
[2 1 1]
[2 2]
[3 1]
[4]

If the input is 5, the program prints

[1 1 1 1 1]
[1 1 1 2]
[1 1 2 1]
[1 1 3]
[1 2 1 1]
[1 2 2]
[1 3 1]
[1 4]
[2 1 1 1]
[2 1 2]
[2 2 1]
[2 3]
[3 1 1]
[3 2]
[4 1]
[5]

11.2.2 Distinct Numbers

Modify the program so that the numbers are distinct. For example, if the input is 5,

[1 4]
[2 3]
[4 1]
[3 2]

ECE264. updated on Thursday 3rd January, 2013 194 Please send corrections, comments, and
questions to yunglu@purdue.edu

are valid partitions, but

[2 2 1]
[1 1 3]

are invalid partitions.

11.2.3 Increasing Numbers

Modify the program so that the numbers are increasing. If the input is 5,

[1 4]
[2 3]

are valid partitions, but

[4 1]
[3 2]

are invalid partitions.

11.2.4 Only 1-5 Can Be Used

Modify the program so that only 1, 2, 3, 4, and 5 are used for any value. For example, if the value
is 16,

[1 4 3 4 4]
[2 3 5 4 2]

are valid partitions, but

[4 1 6 5]
[3 2 11]

are invalid partitions.

ECE264. updated on Thursday 3rd January, 2013 195 Please send corrections, comments, and
questions to yunglu@purdue.edu

11.3 Arrange Three Balls

You are given unlimited numbers of Yellow, Red, and Green balls. Y: Yellow ball. R: Red ball. G:
Green ball. You want to determine the number of options to select the colors under one rule: two
green balls cannot be next to each other. How many options do you have if you want to select n
balls?

If n is 1, there are 3 options:

Y
R
G

If n is 2, there are three 8 options (3 x 3 - 1 because GG is not allowed)

YY
YR
YG
RY
RR
RG
GY
GR

11.3.1 List All Options

Write a program that can generate all options for a given value of n.

11.3.2 Count without Listing All Options

Derive a mathematical formula to determine the number of options without listing all options.

11.4 Encryption

This problem requires three programs.

First, write a program to convert a text file into a file of binary digits (i.e. 0 or 1) using the
letters’ ASCII values. Each letter uses 8 digits. For example, In the ASCII table, ’A’ is 65 so its

ECE264. updated on Thursday 3rd January, 2013 196 Please send corrections, comments, and
questions to yunglu@purdue.edu

binary representation is 01000001. For ’n’, the ASCII value is 110 and the binary representation is
01101110. The program can also convert a file of binary digits to English letters.

Second, write a program to generate an encryption key. The key is a sequence of random 0 or
1. The program should get one input specifying the number of digits in the key.

Third, write a program to encrypt a binary data file (generated by the first program) using
the key (generated by the second program). Encryption is bit-wise exclusive or (XOR) defined as
follows

0 XOR 0 is 0
0 XOR 1 is 1
1 XOR 0 is 1
1 XOR 1 is 0

This is an example:

input 00100011010101
key 11000101101101
XOR
result 11100110101000

In C, the XOR operator is ∧. If someone sees the encrypted data without the key, it is difficult
for the person to guess the original text. If the data file has fewer bits than the number of bits of
the key, the unused key bits are discarded. If the data file has more bits than the number of bits of
the key, the bits in the key are reused from the beginning. For example,

input 00100011010101
key 110001

The key repeats so that it becomes long enough

input 00100011010101
key 11000111000111

| |
repeat repeat

The encryption program can also be used for decryption. If a person has the key and the
encrypted data, the person can restore the original data by applying XOR with the key again.

ECE264. updated on Thursday 3rd January, 2013 197 Please send corrections, comments, and
questions to yunglu@purdue.edu

ECE264. updated on Thursday 3rd January, 2013 198 Please send corrections, comments, and
questions to yunglu@purdue.edu

Part II

Programming Tools

199

Chapter 12

Debugger gdb and ddd

A debugger can be very helpful finding problems in your programs. In fact, You can use a debug-
ger for understanding a program’s behavior even though your program is working. Compared
with adding “debugging messages” printed on screen, a debugger has several advantages:

• You do not have to change your program. This makes using a debugger a very attractive
option when you do not really know what is wrong with your program and what should be
printed.

• A debugger can show you the call stack and allow you to move among the frames. This
can help you understand the sequence of function calls and how the program reaches the
current location. Moreover, a debugger can show the values of arguments.

• If your program crashes (i.e. stops abnormally), a debugger can tell you what code is exe-
cuted just before the program stops. This is much better than printing messages; programs
often stop at unexpected places. As a result, it is common that you add a lot of debugging
messages and they are irrelevant to the problem.

• A debugger allows you to set breakpoints. The program will stop when it reaches a break-
point. You can even set a conditional breakpoint so that the program stops only if the condi-
tion is met, for example, when a variable is smaller than 0.

Even though a debugger has many advantages, it also has disadvantages:

• Most debuggers are designed for interactive debugging. You have to interact with the debug-
gers. This can require a lot of efforts if the problems do not appear early during program
execution. You may need to wait for a long time before the program reaches the place where
problems occur. For this reason, printing debugging messages (called logging) can still be
useful, especially for post-execution analysis.

201

• When a program is compiled with debugging information (by adding -g after gcc), the
program is slower. This can further increase the amount of time taken to reach the place of
problems.

• If a program interacts with another system, stopping or slowing the program’s execution
by a debugger can cause the other system to behave unexpectedly. If you are writing a
program talking to another machine through a network, stopping your program can make
that machine believe that the network is broken and close the network connection with your
program.

Despite the disadvantages, a debugger is still a good tool, if you know how to use it and its
limitations. You can decide whether it is the right tool.

12.1 Trace a Program

To use gdb, you need to add -g after gcc. This tells gcc to add information mapping the ex-
ecutable file back to source code. Let’s consider the program args.c on page 4. The following
commands create the executable file called args and callgdbwith the executable as the command-
line argument.

> gcc -g -Wall -Wshadow args.c -o args
> gdb args

Please notice that gdb takes the name of an executable file, not a .c file. If a program contains
multiple .c files, gdb knows how to map the executable to the correct source files.

After starting gdb, it shows some messages like the following

GNU gdb (GDB) 7.1-ubuntu
Copyright (C) 2010 Free Software Foundation, Inc.
...
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from ...
(gdb)

Here, (gdb) is the command prompt. Our first command it to set a breakpoint at the begin-
ning of the main function.

(gdb) b main
Breakpoint 1 at 0x400573: file args.c, line 9.

ECE264. updated on Thursday 3rd January, 2013 202 Please send corrections, comments, and
questions to yunglu@purdue.edu

What is 0x400573? It is the location of the statement. Section 2.3 explains that every statement
has a location. This value is the location corresponding to the first statement in the main function.

Next, we start the program using the r command. It means “run.” We can add arguments
after r.

(gdb) r 1 2 3 hello C programming this is gdb
Starting program: args 1 2 3 hello C programming this is gdb

Breakpoint 1, main (argc=10, argv=0x7fffe778) at args.c:9
9 printf("There are %d arguments.\n", argc);

The program stops at the first line of the function (skipping the declarations of the variable
cnt); gdb prints the next line to execute. As we can see, the value of argc is 10. What is
0x7fffe778 for argv? Remember that it is a pointer and it stores the address of the string
array. The command n means “next”: the program executes the next statement.

(gdb) n
There are 10 arguments.
10 printf("The arguments are:\n");

The program prints There are 10 arguments. We can also use the print command in
gdb to show the value of argc:

(gdb) print argc
$1 = 10

After each n command, gdb prints the next statement. If you want to see a few more lines
before and after the next statement, you can use the list command.

(gdb) list
5 #include <stdlib.h>
6 int main(int argc, char * argv[])
7 {
8 int cnt;
9 printf("There are %d arguments.\n", argc);
10 printf("The arguments are:\n");
11 for (cnt = 0; cnt < argc; cnt ++)
12 {
13 printf("argv[%d] is %s\n", cnt, argv[cnt]);
14 }

ECE264. updated on Thursday 3rd January, 2013 203 Please send corrections, comments, and
questions to yunglu@purdue.edu

Type n twice and the program enters the for block.

(gdb) n
The arguments are:
11 for (cnt = 0; cnt < argc; cnt ++)
(gdb) n
13 printf("argv[%d] is %s\n", cnt, argv[cnt]);

We can use the print command again to print the value of cnt.

(gdb) print cnt
$2 = 0

Let’s type n three more times and print the value of cnt.

(gdb) n
argv[0] is args
11 for (cnt = 0; cnt < argc; cnt ++)
(gdb) n
13 printf("argv[%d] is %s\n", cnt, argv[cnt]);
(gdb) n
argv[1] is 1
11 for (cnt = 0; cnt < argc; cnt ++)
(gdb) print cnt
$3 = 1

If you do not want to type print so many times, you can use the display command. The
command will keep printing the value.

(gdb) display cnt
1: cnt = 1
(gdb) n
13 printf("argv[%d] is %s\n", cnt, argv[cnt]);
1: cnt = 2
(gdb) n
argv[2] is 2
11 for (cnt = 0; cnt < argc; cnt ++)
1: cnt = 2
(gdb) n
13 printf("argv[%d] is %s\n", cnt, argv[cnt]);
1: cnt = 3

ECE264. updated on Thursday 3rd January, 2013 204 Please send corrections, comments, and
questions to yunglu@purdue.edu

As you can see, cnt’s value is printed every time we enter the n command.

We do not want to type n many times. Instead, we set a breakpoint at line 13 when cnt is
larger than 7.

(gdb) b 13 if (cnt > 7)
Breakpoint 2 at 0x40059d: file args.c, line 13.

We can continue running the program by using the c command; the program will stop when
cnt is larger than 7.

(gdb) c
Continuing.
argv[3] is 3
argv[4] is hello
argv[5] is C
argv[6] is programming
argv[7] is this

Breakpoint 2, main (argc=10, argv=0x7fffe778) at args.c:13
13 printf("argv[%d] is %s\n", cnt, argv[cnt]);
1: cnt = 8

We can use the info b command to show breakpoints.

(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x000000400573 in main

at args.c:9
breakpoint already hit 1 time
2 breakpoint keep y 0x00000040059d in main

at args.c:13
stop only if (cnt > 7)
breakpoint already hit 1 time

You can delete one breakpoint using the delete command followed by a number. For exam-
ple, delete 2 deletes the second breakpoint.

(gdb) delete 2
(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x000000400573 in main

at args.c:9
breakpoint already hit 1 time

ECE264. updated on Thursday 3rd January, 2013 205 Please send corrections, comments, and
questions to yunglu@purdue.edu

The delete command, without any number, deletes all breakpoints.

(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) info b
No breakpoints or watchpoints.

Since there is no breakpoint now, the c command will continue running the program to com-
pletion.

(gdb) c
Continuing.
argv[8] is is
argv[9] is gdb

Program exited normally.

To stop gdb, type the quit command.

The following table shows the commands we have used so far.

Command Meaning
b function name set a breakpoint at the beginning of the function.
b line number set a breakpoint at this line number.
b line number if
condition

set a breakpoint at this line number, stop only when the condition is
met.

c continue running the program until it reaches the next breakpoint,
or until the program completes.

delete delete all breakpoints.
delete number delete a specific breakpoint.
display variable display the value of this variable after every n command.
info b show breakpoints
list list the lines before and after the next statement.
n execute the next statement.
print variable print the value of this variable.
r arguments run the program with the command-line arguments.

12.2 Show Call Stack

This section shows the call stack of balls.c on page 46. We will execute the program with n is 5.

ECE264. updated on Thursday 3rd January, 2013 206 Please send corrections, comments, and
questions to yunglu@purdue.edu

> gcc balls.c -o balls
> gdb balls
GNU gdb (GDB) 7.1-ubuntu
Copyright (C) 2010 Free Software Foundation, Inc.
...
(gdb) b main
Breakpoint 1 at 0x400637: file balls.c, line 37.
(gdb) r 5
Starting program: balls 5
Breakpoint 1, main (argc=2, argv=0x7fffe7d8) at balls.c:37
37 if (argc < 2)
(gdb)

We can use the n command to go to the next statement. Since argc is 2, the if condition is
false.

(gdb) n
42 n = (int) strtol(argv[1], NULL, 10);

Go to the next statement by typing n again.

(gdb) n
43 c = f(n);

We want to see what is happening inside the f function. Therefore, we are going to use the s
command to step into the called function. The bt (backtrace) function displays the call stack. The
call stack currently has two frames for f and main. After #1 is the return location after f finishes.

(gdb) s
f (m=5) at balls.c:11
11 if (m <= 0)
(gdb) bt
#0 f (m=5) at balls.c:11
#1 0x000000400678 in main (argc=2, argv=0x7fffe7d8) at balls.c:43

Type n three times and the program reaches the point calling f again.

(gdb) n
16 if (m == 1)
(gdb) n
21 if (m == 2)
(gdb) n
26 a = f(m - 1);

ECE264. updated on Thursday 3rd January, 2013 207 Please send corrections, comments, and
questions to yunglu@purdue.edu

Type s again to enter the called function. Now, m is 4.

(gdb) s
f (m=4) at balls.c:11
11 if (m <= 0)

We can continue this procedure and see m become 3.

(gdb) n
16 if (m == 1)
(gdb) n
21 if (m == 2)
(gdb) n
26 a = f(m - 1);
(gdb) s
f (m=3) at balls.c:11
11 if (m <= 0)

Type bt to see the call stack.

(gdb) bt
#0 f (m=3) at balls.c:11
#1 0x00000040060a in f (m=4) at balls.c:26
#2 0x00000040060a in f (m=5) at balls.c:26
#3 0x000000400678 in main (argc=2, argv=0x7fffe7d8) at balls.c:43

You can see clearly the return locations and m’s value in each frame. We can see the value by
using the print command. Currently, its value is 3. We can also print m’s address by adding & in
front.

(gdb) print m
$1 = 3
(gdb) print & m
$2 = (int *) 0x7fffe64c

We can use the f (frame) command go to another frame. Let’s go to frame #2 and print m’s
value as well as its address.

ECE264. updated on Thursday 3rd January, 2013 208 Please send corrections, comments, and
questions to yunglu@purdue.edu

(gdb) f 2
#2 0x00000040060a in f (m=5) at balls.c:26
26 a = f(m - 1);
(gdb) print m
$3 = 5
(gdb) print & m
$4 = (int *) 0x7fffe6ac

As you can see, this m is stored at an address different from the m in frame #0.

You can continue using these commands to see how the call stack changes and the arguments’
values, as well as the values of the local variables.

Command Meaning
bt Backtrace, show the call stack.
f number go to another frame.
s Step into a function.

12.3 Locate Segmentation Fault

If a C program, segmentation fault means a program intends to access (read from or write
to) an invalid memory location. The following example will cause segmentation fault during
execution.

/*
file: segfault1.c
purpose: an example causing segmentation fault

*/
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char * argv[])
{

int * arr;
arr[2] = 10;
return EXIT_SUCCESS;

}

> gcc -Wall -Wshadow segfault1.c -o seg
segfault1.c: In function f1:
segfault1.c:6: warning: arr is used uninitialized in this function
> ./seg
Segmentation fault

ECE264. updated on Thursday 3rd January, 2013 209 Please send corrections, comments, and
questions to yunglu@purdue.edu

The program causes Segmentation fault. Which line causes the fault? We can use gdb to
find the answer:

> gdb seg
GNU gdb (GDB) 7.1-ubuntu
(gdb) r
Starting program: seg

Program received signal SIGSEGV, Segmentation fault.
0x0000004004d7 in main (argc=1, argv=0x7fffe7d8)

at segfault1.c:6
6 arr[2] = 10;
(gdb) bt
#0 0x0000004004d7 in main (argc=1, argv=0x7fffe7d8)

at segfault1.c:6

The program fails at line 6. This is the line where gcc gives a warning message. From this
example, we know gcc warnings should be treated seriously because warnings often indicate
errors. The program fails because it wants to modify an element of the array but no memory has
been allocated yet.

The previous program always causes segmentation fault. This is actually good for a program-
mer: the programmer knows something is wrong and needs to be fixed. Sometimes, a program
has problems but does not crash. The programmer may think the program is working. The fol-
lowing is an example. When I execute the program, it does not always crash.

/*
file: segfault2.c
purpose: another example causing segmentation fault (through
function calls with arguments)

*/
#include <stdio.h>
#include <stdlib.h>
void f1(int a, int b)
{

int * arr;
arr[a] = b;

}
void f2(int a)
{

if (a > 5)
{

return;
}

else

ECE264. updated on Thursday 3rd January, 2013 210 Please send corrections, comments, and
questions to yunglu@purdue.edu

{
f1(a + 3, a - 7);

}
}int main(int argc, char * argv[])
{

f2(1);
return EXIT_SUCCESS;

}

However, we do know that the program has the same problem: it does not allocate memory
for the array. How can we fix a problem if we do know the existence of the problem? We can use
valgrind mentioned in Section 5.8.

> valgrind --leak-check=yes ./seg
==2731== Memcheck, a memory error detector
==2731== Copyright (C) 2002-2009, and GNU GPL’d, by Julian Seward et al.
==2731== Using Valgrind-3.6.0.SVN-Debian and LibVEX; rerun with -h

for copyright info
==2731== Command: ./seg
==2731==
==2731== Use of uninitialised value of size 8
==2731== at 0x4004DE: f1 (segfault2.c:11)
==2731== by 0x400507: f2 (segfault2.c:21)
==2731== by 0x400525: main (segfault2.c:25)
==2731==
==2731== Invalid write of size 4
==2731== at 0x4004DE: f1 (segfault2.c:11)
==2731== by 0x400507: f2 (segfault2.c:21)
==2731== by 0x400525: main (segfault2.c:25)
==2731== Address 0x10 is not stack’d, malloc’d or (recently) free’d
==2731==
==2731==
==2731== Process terminating with default action of signal 11 (SIGSEGV)
==2731== Access not within mapped region at address 0x10
==2731== at 0x4004DE: f1 (segfault2.c:11)
==2731== by 0x400507: f2 (segfault2.c:21)
==2731== by 0x400525: main (segfault2.c:25)
==2731== If you believe this happened as a result of a stack
==2731== overflow in your program’s main thread (unlikely but
==2731== possible), you can try to increase the size of the
==2731== main thread stack using the --main-stacksize= flag.
==2731== The main thread stack size used in this run was 8388608.
==2731==
==2731== HEAP SUMMARY:
==2731== in use at exit: 0 bytes in 0 blocks

ECE264. updated on Thursday 3rd January, 2013 211 Please send corrections, comments, and
questions to yunglu@purdue.edu

==2731== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==2731==
==2731== All heap blocks were freed -- no leaks are possible
==2731==
==2731== For counts of detected and suppressed errors, rerun with: -v
==2731== Use --track-origins=yes to see where uninitialised values come from
==2731== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 4 from 4)
Segmentation fault

The first line is the command we type at Terminal and the rest is the report. As you can see,
valgrind detects something wrong at line 11:

arr[a] = b;

The report shows the call sequence:

==2731== at 0x4004DE: f1 (segfault2.c:11)
==2731== by 0x400507: f2 (segfault2.c:21)
==2731== by 0x400525: main (segfault2.c:25)

At line 25 of segfault2.c, main calls f2; at line 21 f2 calls f1. It is a good habit to use
valgrind to test your program even though it seems working.

12.4 Print Object

GDB can print the attributes of an object. We consider the Vector example on page 108. The
following are the GDB commands we use to show the attributes:

> gcc -g vector.c -o vec
> gdb vec
GNU gdb (GDB) 7.1-ubuntu
Copyright (C) 2010 Free Software Foundation, Inc.
(gdb) b main
Breakpoint 1 at 0x400534: file vector.c, line 17.
(gdb) r
Breakpoint 1, main (argc=1, argv=0x7fffe7d8) at vector.c:17
17 v1.x = 3;
(gdb) n
18 v1.y = 6;
(gdb)

ECE264. updated on Thursday 3rd January, 2013 212 Please send corrections, comments, and
questions to yunglu@purdue.edu

19 v1.z = -2;
(gdb)
20 printf("The vector is (%d, %d, %d).\n", v1.x, v1.y, v1.z);
(gdb) print v1
$1 = {x = 3, y = 6, z = -2}

The last command print v1 can show all attributes of a Vector object.

ECE264. updated on Thursday 3rd January, 2013 213 Please send corrections, comments, and
questions to yunglu@purdue.edu

12.5 DDD

If you prefer to use a graphical user interface for debugging, DDD (data display debugger) is
a good choice. DDD is provides a user interface for GDB so all GDB commands are still valid.
Figure 12.1 shwos the start-up window of DDD.

Figure 12.1: Start-up window of DDD.

ECE264. updated on Thursday 3rd January, 2013 214 Please send corrections, comments, and
questions to yunglu@purdue.edu

Select File - Open Program and find the program you want to debug. This is the executable,
not the source file. Figure 12.2 shows the window after opening the vector.c program.

Figure 12.2: DDD opens the vector.c program.

ECE264. updated on Thursday 3rd January, 2013 215 Please send corrections, comments, and
questions to yunglu@purdue.edu

Move the mouse cursor next to the line with printf. Click the right button and select Set
Breakpoint. As you can see in Figure 12.3, a STOP symbol is added in front of the line.

Figure 12.3: A breakpoint is set. A STOP symbol is shown at the line.

ECE264. updated on Thursday 3rd January, 2013 216 Please send corrections, comments, and
questions to yunglu@purdue.edu

Click Run and the program stops at the breakpoint. An arrow points to the breakpoint.

Figure 12.4: The program stops at the breakpoint.

ECE264. updated on Thursday 3rd January, 2013 217 Please send corrections, comments, and
questions to yunglu@purdue.edu

Use the mouse to highlight v1 and select Display v1. Figure12.5 shows the attributes of v1.

Figure 12.5: DDD shows the attributes of v1.

This is a brief introduction of DDD. DDD has many other functions, you should spend a few
minutes exploring the functions.

ECE264. updated on Thursday 3rd January, 2013 218 Please send corrections, comments, and
questions to yunglu@purdue.edu

12.6 Prevent Bugs

The best method to debug a program is to prevent bugs from happening. Here are some sugges-
tions about how to prevent bugs in your programs.

• Design before coding. When you write a program to solve a complex problem, you have to
develop a solution before writing code. A design has two parts: algorithms and program
organization. This book focuses more on the latter part. Which functions do you need? What
are their arguments? If you have a good design, coding is much easier. The sooner you start
coding, the longer it takes to finish the program because your program will be “messy”.

• Assume your programs will change many times. A common mistake among students is to as-
sume that programs will be thrown away quickly. As a result, the students write “dirty”
code— disorganized and hard to understand. Their attitude is to write programs for as-
signments and do not want to see their own programs again. Unfortunately, this approach
usually hurts them before submissions. They will quickly discover that their programs are
too difficult to debug.

Why will you change your programs many times? Obviously, if your programs have prob-
lems (i.e. bugs), you have to change the programs. You change programs for many other
reasons: You misunderstand the requirements. You need better algorithms. Your competi-
tors add new features and you have to provide the same or better features to keep cus-
tomers. Non-trivial programs—programs that are worth your effort writing—will probably
be rewritten many times. Why? Because technologies are changing. Because the world is
changing. Your customers are changing. Your competitors are changing. You need to design
your programs so that they can be changed more easily.

If you assume that your programs will change many times, you will be more careful thinking
about the structure. Your programs will be more understandable. Some people believe
that a well-designed program needs to be written only once. I think this is too ideal and
impractical. Believing a well-designed program will not change is like believing a well-
designed airplane will never crash. Airplanes should be designed carefully but there are
many protections (such as oxygen masks and evacuation slides) in case problems do arise.
Similarly, a well-designed program will change. The question is whether you can make
changes easy.

• Take one step each time. Write a small piece of code, make sure it works before you do some-
thing else. This usually means that you have to write additional code to test that small piece
of code. Often, you have to create test cases for each small piece of code. Sometimes, you
create the test cases manually; sometimes, you write “test case generators”.

• Make every line solid. Many people write messy code because they will “clean up” later.
Unfortunately, they never have time to clean up. Why? Their messy code is so buggy that
they are too busy debugging. If they write “clean” code, they don’t have to clean up and
they probably don’t have many bugs.

ECE264. updated on Thursday 3rd January, 2013 219 Please send corrections, comments, and
questions to yunglu@purdue.edu

• Initialize variables and pointers. This is a common problem. A program’s behavior is undefined
if there are unitialized variables or pointers. Unfortunately, this type of bugs is hard to
detect by testing. You should assign invalid values if you do not know what values to use for
initialization. For example, initialize pointers to NULL. Why? This guarantees the programs
to fail if the values are not corrected later. Will initialization make a program slower? Yes, by
a fraction of a nanosecond. How long does it take you to debug a program with uninitialized
variables? Probably several hours or longer. Why would you save a nanosecond at the risk
of spending a few hours?

• Allocate and release memory in the same function. Memory allocation and release should be
done inside the same function. For a structure, the constructor and the destructor should be
called in the same function. Why? It is less likely that you forget the other.

• Create functions and do not copy-paste code. Very often your programs need to do something
similar but slightly different. An “easy” solution is to copy-paste code and make necessary
changes. However, this easy solution can make your program buggy. Why? If you change
something in one place and forget to change other places, you have bugs. When you want
to copy-paste code, try to create a function and use the arguments to handle the differences.

• Treat gcc compiler warnings seriously. Some bugs are detected by gcc. On page 210, the
warning message is indeed a serious problem. If we pay attention to gcc warnings, we can
fix many problems before running the program.

• Understand types. What are types? Examples are int, double, and structures explained in
Chapter 7. Types define the sizes of memory for storing data; this the reason we need to use
sizeof when calling malloc. Types define what operations are allowed. If p is a pointer to
a structure object, we can use p -> attr to access an attribute. If i is an integer, we cannot
use i -> attr; gcc will tell us this is illegal.

• Use arguments to control functions’ behavior. Each function’s behavior should depends only
on the arguments. Do not use global variables. Why? Global variables make it difficult
to understand a function’s behavior. You need to understand where and how the global
variables are changed. If you want to understand any function where one global variable
is used (read or write), you have to understand all functions where this global variable is
changed.

You should not use static variables, either. What is a static variable? It is created by adding
static in front of a variable’s type. For example,

int f(int a, char b)
{

static int var; /* a static variable */
...

}

A static varaiable is visible inside a function only. This property makes a static varaible
similar to a local variable without the word static. However, a static variable’s value is
kept when the same function is called again. Consider this example,

ECE264. updated on Thursday 3rd January, 2013 220 Please send corrections, comments, and
questions to yunglu@purdue.edu

#include <stdio.h>
#include <stdlib.h>
void f(int a)
{

static int b = 1;
printf("b = %d\n", b);
b = a;

}
int main(int argc, char * argv[])
{

int i;
for (i = 9; i > 0; i --)
{

f(i);
}
return EXIT_SUCCESS;

}

What is the output of this program? Without the word static, this program prints only 1
because b’s value is always initialized to 1. With the word static, however, the program
prints

b = 1
b = 9
b = 8
b = 7
b = 6
b = 5
b = 4
b = 3
b = 2

Why? The word static keeps b’s value from the previous call of function f. Why is is a
problem? Imagine the function f has a condition based on b:

if (b > 5)
{

....
}

You have to know b’s value from the previous call of function f if you want to know whether
this condition is true or not. To make things worse, the condition modifies b in this way:

ECE264. updated on Thursday 3rd January, 2013 221 Please send corrections, comments, and
questions to yunglu@purdue.edu

void f(int a)
{

static int b = 1;
printf("b = %d\n", b);
if (b > 5)
{

...
b = a;

}
else
{

...
b = a - 3;

}
printf("b = %d\n", b);

}

It is really hard to understand what the function does (the ... parts) if you do not know b’s
value. You need to keep track of b’s value every time function f is called. This is difficult if
f is called a dozen times or more.

Why does C allow global variables and static variables if they should not be used? C was
designed more than 40 years ago. Programs are much more complex now and some rules
are needed to help write and understand programs.

• Use global constants and avoid “mysterious” values. Global variables are bad but global con-
stants are all right. For example, if your program needs the value of π, you can define it
as

#define PI 3.1415926

When you need the value, you simply use PI.

You should define a global constant instead of using a mysterious value. For example,

int f(int a)
{

if (a > 3)
{

...
}

}

ECE264. updated on Thursday 3rd January, 2013 222 Please send corrections, comments, and
questions to yunglu@purdue.edu

What is the meaning of 3? Where does it come from? Should it actually be 3.14159? Do you
use 3 because you know a is an integer? A program can become difficult to understand and
debug if you have a few mysterious constants and their values are somehow related. You
will easily lose track of them. If you change one, you will likely forget to change the others.

• Examine, describe, and remove assumptions. When you write a program, you probably make
some assumptions. For example, you may assume a variable is always positive. Your pro-
gram will not work if the variable becomes zero or negative. Maybe, you assume that a user
has only five options. It is inconceivable that anyone would ask for any other option. If these
restrictions are true, describe the assumptions clearly as comments or using code to check
validaty.

In many cases, however, you want to give yourself some flexibility. Why? The world is
changing. Remember I told you earlier that programs will probably change many times?
If an assumption is not really necessary, remove it. Allow the program to give users more
options. As for restricting a number to be positive, have you played a computer game which
allows you to teleport when you are about to penetrate a wall? Maybe you can use a negative
value to indicate that you are in a different environment. You can have assumptions but you
must ensure that the assumptions are necessary and clearly described.

• Use static functions as needed. A static function can be called by only the functions in the same
file. This prevents you from accidentally calling the function outside the same file. Why is
this helpful? For example, in Section 10.2.6 IteratorInternal construct can be called
by only function in the file treeiterator.c because it is supposed to be “internal” to
the iterator. By making IteratorInternal construct a static function, you prevent
accidentally calling it outside the file.

12.7 Controversy about assert

Some books encourage programmers to use assert. Assertion means something must be true;
otherwise, the program stops. For example,

assert(t > 0);

You ensure that t must be positive at that point, even though t may be negative earlier or
later. If the assertion fails, i.e. t is negative or zero, the program stops. This prevents t’s incorrect
value from causing problems later. This is a controversial concept. Why? Because you, as the
programmer, give up your responsibility. You are saying, “I am sure t is positive. However, if
I am wrong, I don’t know what to do.” If the program is safety-critical, stopping the program
can trouble. Instead stopping the program, you should handle the situation and recover from
the problem. As more and more programs are deployed in safety-critical systems, using assert
becomes less and less acceptable. Instead, you should

ECE264. updated on Thursday 3rd January, 2013 223 Please send corrections, comments, and
questions to yunglu@purdue.edu

Handle the problem. Don’t stop the program.

12.8 Practice Problems

1. The following program counts the occurrences of uppercase letters in a file. The name of
the file is given at the command line. The program has multiple problems, even though gcc
reports no error or warning. Please identify the errors and correct them.

#include <stdio.h>
#include <stdlib.h>
#define TRUE 1
#define FALSE 0
int isUpper(int ch)
{
if (ch > 65)

if (ch < 96)
printf("%c is an uppercase letter.\n", ch);
return TRUE;

return FALSE;
}
int main(int argc, char * argv[])
{

int total;
FILE * fptr = fopen(argv[1], "r");
while (! feof(fptr))
{

int onechar = fgetc(fptr);
if (isUpper(onechar) == TRUE)

printf("There are %d uppercase characters so far.\n", total);
total ++;

}
printf("There are %d uppercase characters.\n", total);
return EXIT_FAILURE;

}

This is the input

ABCDEFGXYZ
abcdpqrstu
1234567890
$#ˆ&*(@{\>

This is part of the output

ECE264. updated on Thursday 3rd January, 2013 224 Please send corrections, comments, and
questions to yunglu@purdue.edu

> gcc -Wall -Wshadow buggy.c -o buggy
> ./buggy testinput

There are 0 uppercase characters so far.
B is an uppercase letter.
There are 1 uppercase characters so far.
C is an uppercase letter.
There are 2 uppercase characters so far.
D is an uppercase letter.
There are 3 uppercase characters so far.
E is an uppercase letter.
There are 4 uppercase characters so far.
...
...
\ is an uppercase letter.
There are 41 uppercase characters so far.
There are 42 uppercase characters so far.
There are 43 uppercase characters so far.
There are 44 uppercase characters so far.
There are 45 uppercase characters.

ECE264. updated on Thursday 3rd January, 2013 225 Please send corrections, comments, and
questions to yunglu@purdue.edu

ECE264. updated on Thursday 3rd January, 2013 226 Please send corrections, comments, and
questions to yunglu@purdue.edu

Chapter 13

Test Coverage

When you write code, you probaly expect that every line you write will do something in some
conditions. If some lines in your program never does anything, your effort is wasted. Why would
you write code that does nothing? Thus, if a line never does anything, it probably means the
program has a bug. Consider this code I saw in a student’s program:

if ((x < 0) && (x > 400))
{

vx = -vx;
}

This is part of a computer game of a bouncing ball in a court whose width is 400. The intent of
this code is to change the horizontal velocity vx when the ball hits the left wall x < 0 or hits the
right wall x > 400. What is wrong with this code? The student intends to type

if ((x < 0) || (x > 400))
{

vx = -vx;
}

However, the student mistakenly typed && instead of ||. Since it is impossible for x to be
smaller than zero and at the same time greater than 400,

vx = -vx;

is never executed.

As a programmer, reading your code carefully is extremely important. If you read carefully
enough, you should be able to detect this type of errors. Just in case you do not find this problem,
a tool may help you. This tool is test coverage. It tells you whether a particular line of code has
been executed for a particular test input. Let’s consider the following program.

227

/*
file: coverage.c
purpose: a condition that can never be true

*/
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char * argv[])
{

int x;
int vx = 10;
for (x = -100; x < 1000; x ++)

{
if ((x < 0) && (x > 400))

{
vx = -vx;
printf("change direction\n");

}
}

return EXIT_SUCCESS;
}

We can use a tool called gcov to find that the two lines

vx = -vx;
printf("change direction\n");

are never executed.

To run gcov, we have to add additional flags after gcc:

> gcc -g -Wall -Wshadow -fprofile-arcs -ftest-coverage coverage.c -o cov
> ./cov

Two files are generated: coverage.gcda and coverage.gcno. Now, we can run the gcov
command.

> gcov coverage.c
File ’coverage.c’
Lines executed:71.43% of 7
coverage.c:creating ’coverage.c.gcov’

Another new file called coverage.c.gcov is generated. The following shows the content of
the file:

ECE264. updated on Thursday 3rd January, 2013 228 Please send corrections, comments, and
questions to yunglu@purdue.edu

-: 0:Source:coverage.c
-: 0:Graph:coverage.gcno
-: 0:Data:coverage.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:/*
-: 2: file: coverage.c
-: 3: purpose: a condition that can never be true
-: 4:*/
-: 5:#include <stdio.h>
-: 6:#include <stdlib.h>
1: 7:int main(int argc, char * argv[])
-: 8:{
-: 9: int x;
1: 10: int vx = 10;

1101: 11: for (x = -100; x < 1000; x ++)
-: 12: {

1100: 13: if ((x < 0) && (x > 400))
-: 14: {

#####: 15: vx = -vx;
#####: 16: printf("change direction\n");

-: 17: }
-: 18: }
1: 19: return EXIT_SUCCESS;
-: 20:}

As you can see, lines 15 and 16 are marked by #####. This means these two lines are never
executed. When you have a complex program, use gcov to detect whether any line is never
executed.

If you find typing these commands too much work, write Makefile so that you need to type
only make every time you modify the program.

GCC = gcc -g -Wall -Wshadow -fprofile-arcs -ftest-coverage
cov: coverage.c

$(GCC) coverage.c -o cov
./cov
gcov coverage.c
grep "#" coverage.c.gcov

clean:
rm -f *.gcov *.gcno cov

If you type make, this is the output

gcc -g -Wall -Wshadow -fprofile-arcs -ftest-coverage coverage.c -o cov

ECE264. updated on Thursday 3rd January, 2013 229 Please send corrections, comments, and
questions to yunglu@purdue.edu

./cov
gcov coverage.c
File ’coverage.c’
Lines executed:71.43% of 7
coverage.c:creating ’coverage.c.gcov’

grep "#" coverage.c.gcov
-: 5:#include <stdio.h>
-: 6:#include <stdlib.h>

#####: 15: vx = -vx;
#####: 16: printf("change direction\n");

This Makefile also has an option called clean. If you type make clean, the files generated
by gcov are deleted.

If gcov reports that some lines are never executed, the problem may come from the program,
as shown in this case. Sometimes, the problem comes from the test inputs. Designing good test
inputs is not trivial and some books discuss in details how to design test inputs. Here are some
suggestions. Suppose you are writing a program searching whether a value is an element of a
sorted array. You should design test inputs to cover the following scenarios:

• The value to search is an element of the array, somewhere in the middle of the array.

• The value is not an element of the array, between some elements in the array.

• The value is the same as the first element.

• The value is the same as the last element.

• The value is smaller than all elements.

• The value is larger than all elements.

As you can see, creating good test inputs is not trivial. A different approach is called formal
verification by proving a program is correct regardless of inputs. This is an advanced topic and will
not be discussed here.

It is important to understand the limitation of test coverage. Low coverage means the test
inputs need improvement. However, high coverage is not necessarily better. A good test input is
one that can detect problems in your programs. A simple program like the following can get 100%
coverage.

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char * argv[])
{

return EXIT_SUCCESS;
}

ECE264. updated on Thursday 3rd January, 2013 230 Please send corrections, comments, and
questions to yunglu@purdue.edu

This program does not do anything. Pursuing high coverage per se should not be your goal.
Your goal should be detecting and fixing problems in your programs.

ECE264. updated on Thursday 3rd January, 2013 231 Please send corrections, comments, and
questions to yunglu@purdue.edu

Index

argc, 10
argv, 10
attribute, 108

binary search tree, 171

call stack, 23, 25
command line, 9
compile, 144, 147

deep copy, 118, 124
divide and conquer, 37

function return location, 23
function: declaration, 15
function:definition, 16
function:implementation, 16

heap, 77
heap memory, 21

integer partition, 40
iterator, 182

leaf, 171
link, 3, 144, 147
linked list, 156
Linux Accessories, 5
Linux Terminal, 6

Makefile, 149
memory leak, 79

object, 108
object file, 148

pointer, 67

recursion, 37

scope, 28

separate compilation, 148
shadow variable, 10
shallow copy, 124
short circuit, 168
silbings, 171
stack memory, 19
statck memory, 21
string, 95

terminating condition, 44
tower of Hanoi, 41

valgrind, 79, 211

232

	I C Language Features
	Functions
	Purposes of Functions
	main Function
	Function with Return Value
	Function with Control
	Function Calls Function
	Practice Problems

	Computer Memory (Stack)
	Address and Value
	Stack Memory
	Function Return Location
	Call Stack
	Scope
	Return Value
	Practice Problems

	Recursion
	Examples
	Select Balls
	One-Way Street
	Integer Partition
	Tower of Hanoi

	C Implementation
	Select Balls
	One-Way Street
	Integer Partition
	Tower of Hanoi
	Fibonacci Numbers

	Practice Problems

	Pointer
	Pointer and Address
	Pointer and Argument
	Array and Argument
	Practice Problems

	Memory Management (Heap)
	Create a Fixed-Size Array
	Create an Array using malloc
	Stack and Heap
	Array and Address
	Function Return a Heap Address
	Two-Dimensional Array in C
	Pointer and Argument
	Use valgrind to Detect Memory Leak

	String
	Compare Strings using strcmp
	Use strstr to Detect Substring
	Understand argv
	Count Substrings
	Practice Problems

	Structure
	Vector
	Object as an Argument
	Object and Pointer
	Return an Object
	Object and malloc
	Constructor and Destructor
	Structure in Structure

	File Operations
	Read Character by Character Using fgetc
	Read Integer
	Read and Write Integers
	Read String
	fseek and ftell
	Binary File and Object
	Practice Problems

	Program with Multiple Files
	Header File
	Compile and Link
	Makefile
	Use Makefile for Testing
	Practice Problems

	Dynamic Structures
	Linked List
	Node
	Insert
	Delete
	C Program

	Binary Tree
	Node
	Insert
	Search
	Print
	Delete
	Iterator
	Destruct
	main
	Makefile

	Practice Problems

	More Practice Problems
	Anagrams
	Distinct Letters
	Unique Words

	Integer Partition
	All Partitions
	Distinct Numbers
	Increasing Numbers
	Only 1-5 Can Be Used

	Arrange Three Balls
	List All Options
	Count without Listing All Options

	Encryption

	II Programming Tools
	Debugger gdb and ddd
	Trace a Program
	Show Call Stack
	Locate Segmentation Fault
	Print Object
	DDD
	Prevent Bugs
	Controversy about assert
	Practice Problems

	Test Coverage

