
ECE264 Spring 2013
Final Exam, April 30, 2013

In signing this statement, I hereby certify that the work on this exam is my
own and that I have not copied the work of any other student while completing
it. I also declare that I will not discuss/share this exam with anybody on April
30, 2013. I understand that, if I fail to honor this agreement, I will receive
a score of ZERO for this exam and will be subject to possible disciplinary
action.

Signature:

You must sign here. Otherwise you will receive a 2-point penalty.

Read the questions carefully.

This is an open-book, open-note exam. You may use any book, notes, or program printouts.
No personal electronic device is allowed. You may not borrow books from other students.

Three learning objectives (recursion, structure, and dynamic structure) are tested in this
exam. To pass an objective, you must receive 50% or more points in the corresponding
question.

Questions (Total 15 points)

1. recursion (6 points, learning objective 1)

2. binary search tree (6 points, learning objectives 1, 3, 4)

3. binary tree as array (3 points)

1

Contents

1 Recursion (6 points) 3
1.1 Recursive Formula (3 points) . 3
1.2 Generate Valid Partitions (3 points) . 5

2 Binary Search Tree (6 points) 7
2.1 Debug (3 points) . 7
2.2 Debug (3 points) . 9

3 Binary Tree as Array (3 points) 12

Learning Objective 1 (Recursion) Pass Fail

Learning Objective 3 (Structure) Pass Fail

Learning Objective 4 (Dynamic Structure) Pass Fail

Total

2

1 Recursion (6 points)

For a given positive integer, we want to partition it into the sum of some positive integers,
or itself. For example, 1 to 4 can be partitioned as

1 = 1 2 = 1 + 1 3 = 1 + 1 + 1 4 = 1 + 1 + 1 + 1

= 2 = 1 + 2 = 1 + 1 + 2

= 2 + 1 = 1 + 2 + 1

= 3 = 1 + 3

= 2 + 1 + 1

= 2 + 2

= 3 + 1

= 4

We observe that there exists
• One way to partition 1.
• Two ways to partition 2.
• Four ways to partition 3.
• Eight ways to partition 4.

In general, there are 2n−1
ways to partition value n. You do not have to prove this.

1.1 Recursive Formula (3 points)

We want to add a restriction of the partitions. The used numbers must alternate between
odd and even numbers. In other words, if an odd number is used, the next must be an even
number. If an even number is used, the next must be an odd number. If only one number
is used (i.e. the number to be partitioned), this restriction does not apply and it is always
a valid partition. This restriction allows only the following partitions for 1 to 7:

1 = 1 2 = 2 3 = 1 + 2 4 = 1 + 2 + 1

= 2 + 1 = 4

= 3

5 = 1 + 4 6 = 1 + 2 + 1 + 2 7 = 1 + 2 + 1 + 2 + 1

= 2 + 1 + 2 = 1 + 2 + 3 = 1 + 6

= 2 + 3 = 1 + 4 + 1 = 2 + 1 + 4

= 3 + 2 = 2 + 1 + 2 + 1 = 2 + 3 + 2

= 4 + 1 = 3 + 2 + 1 = 2 + 5

= 5 = 6 = 3 + 4

= 4 + 1 + 2

3

= 4 + 3

= 5 + 2

= 6 + 1

= 7

The following table is for your reference.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
number of partitions 1 1 3 2 6 6 11 16 22 37 49 80 113 172 257

How many ways can you partition value n (n > 4) using alternating odd and even numbers?
Write down a recurive equation (or equations). Briefly explain your answer. You will receive
no point if you write the answer without any explanation. Note: This is a mathematical
question, not a programming question.
Hint: Consider whether n is an even number or an odd number separately.

4

1.2 Generate Valid Partitions (3 points)

Modify the following program so that it generates only valid partitions under the restriction.
You cannot generate invalid partitions and then check whether the restriction is satisfied.

#include <stdio.h>1
#include <stdlib.h>2
void printPartition(int * arr , int len);3

4
/*5

Change recursivePartition so that6
7

an even number is followed by an odd number8
9

an odd number is followed by an even number10
11

This is the only function you can change. You can add new12
functions.13

*/14
15

void recursivePartition(int * arr , int ind , int val , int * count)16
{17

int iter;18
if (val == 0)19

{20
(* count) ++;21
printPartition(arr , ind);22

}23
for (iter = 1; iter <= val; iter ++)24

{25
arr[ind] = iter;26
recursivePartition(arr , ind + 1, val - iter , count);27

}28
}29

30
/* ======================================31

Do not change anything below this line32
====================================== */33

34
void partition(int value)35
{36

int count = 0;37
printf ("\n\npartition %d\n", value);38
int * arr = malloc(sizeof(int) * value);39

5

recursivePartition(arr , 0, value , & count);40
free (arr);41
printf (" There are %d valid partitions for %d.\n", count , value);42

}43
44

int main(int argc , char ** argv)45
{46

int val;47
for (val = 1; val <= 10; val ++)48

{49
partition(val);50

}51
return EXIT_SUCCESS;52

}53
54

void printPartition(int * arr , int len)55
{56

int iter;57
if (len == 0)58

{59
return;60

}61
for (iter = 0; iter < len - 1; iter ++)62

{63
printf ("%d + ", arr[iter]);64

}65
printf ("%d\n", arr[len - 1]);66

}67

6

2 Binary Search Tree (6 points)

2.1 Debug (3 points)

Consider the following function for tree delete. There is a (or several) mistake in the
following program.

/*1
Delete the node whose value is val.2
root: the root of the tree3
val: the value to search4

5
If val is not stored in the tree , this function does not delete6
anything.7

8
The function returns the root of the tree after deleteing the node.9

*/10
Tree * Tree_delete(Tree * root , int val)11
{12

if (root == NULL)13
{14

return NULL;15
}16

if (val < (root -> value))17
{18

root -> left = Tree_delete(root -> left , val);19
return root;20

}21
if (val > (root -> value))22

{23
root -> right = Tree_delete(root -> right , val);24
return root;25

}26
/* root ’s value is the the same as val , needs to delete root */27
if (((root -> left) == NULL) && ((root -> right) == NULL))28

{29
/* root has no child */30
free (root);31
return NULL;32

}33
if ((root -> left) == NULL)34

{35
Tree * rc = root -> right;36
free (root);37

7

return rc;38
}39

if ((root -> right) == NULL)40
{41

Tree * lc = root -> left;42
free (root);43
return lc;44

}45
/* root have two children */46

47
/* There is a (or several) mistake in the following lines */48
/* == */49
/* BELOW THIS LINE */50

51
/* find the immediate successor */52
Tree * su = root -> right; /* su must not be NULL */53

54
while (su != NULL)55

{56
su = su -> left;57

}58
/* su is root ’s immediate successor */59
/* swap their values */60
root -> value = su -> value;61
su -> value = val;62
/* delete the successor */63
root -> right = Tree_delete(root -> right , val);64
/* ABOVE THIS LINE */65
/* == */66
return root;67

}68

This question does not ask you to correct the mistake (because you can find the correction
from the course note). Do not explain how to correct the program.
Answer the following questions with brief explanations. You will receive no point if you
do not explain your answers.

• Which line (or lines) has the mistake (or mistakes)? (0.5 point)
• What will the function do with this mistake (or mistakes)? What can you observe

when running the program? Explain the different behavior between the correct function
and this incorrect function. (1.5 point)
Choose the best one answer from the following list:

1. segmentation fault
2. no observable problem

8

3. will not terminate
4. something else (please specify. You will receive no point if you do not specify)

• Does the program have invalid memory access? (0.5 point)
• Does the program leak memory? Your answer should consider whether all allocated

memory can be released by calling Tree destroy before the program ends. (0.5 point)

2.2 Debug (3 points)

Consider the following function for tree delete. There is a (or several) mistake in the
following program.

/*1
Delete the node whose value is val.2
root: the root of the tree3
val: the value to search4

5
If val is not stored in the tree , this function does not delete6
anything.7

8
The function returns the root of the tree after deleteing the node.9

*/10
Tree * Tree_delete(Tree * root , int val)11
{12

if (root == NULL)13
{14

return NULL;15
}16

if (val < (root -> value))17

9

{18
root -> left = Tree_delete(root -> left , val);19
return root;20

}21
if (val > (root -> value))22

{23
root -> right = Tree_delete(root -> right , val);24
return root;25

}26
/* root ’s value is the the same as val , needs to delete root */27
if (((root -> left) == NULL) && ((root -> right) == NULL))28

{29
/* root has no child */30
free (root);31
return NULL;32

}33
if ((root -> left) == NULL)34

{35
Tree * rc = root -> right;36
free (root);37
return rc;38

}39
if ((root -> right) == NULL)40

{41
Tree * lc = root -> left;42
free (root);43
return lc;44

}45
/* root have two children */46

47
/* There is a (or several) mistake in the following lines */48
/* == */49
/* BELOW THIS LINE */50
/* find the immediate successor */51
Tree * su = root -> right; /* su must not be NULL */52

53
while ((su -> left) != NULL)54

{55
su = su -> left;56

}57
/* su is root ’s immediate successor */58
/* swap their values */59

10

root -> value = su -> value;60
/* delete the successor */61
root -> right = Tree_delete(root , val);62
/* ABOVE THIS LINE */63
/* == */64
return root;65

}66

This question does not ask you to correct the mistake (because you can find the correction
from the course note). Do not explain how to correct the program.
Answer the following questions with brief explanations. You will receive no point if you
do not explain your answers.

• Which line (or lines) has the mistake (or mistakes)? (0.5 point)
• What will the function do with this mistake (or mistakes)? What can you observe

when running the program? Explain the different behavior between the correct function
and this incorrect function. (1.5 point)
Choose the best one answer from the following list:

1. segmentation fault
2. the value not deleted
3. no observable problem
4. will not terminate
5. something else (please specify. You will receive no point if you do not specify)

• Does the program have invalid memory access? (0.5 point)
• Does the program leak memory? Your answer should consider whether all allocated

memory can be released by calling Tree destroy before the program ends. (0.5 point)

11

3 Binary Tree as Array (3 points)

Binary trees are generally implemented as dynamic data structures with pointers to left and
right subtrees, but it is also possible to use an array to store the data in a binary tree.
In such a case, the array is created when the tree is created and thus has a fixed size. It
is harder to expand the tree if necessary, but accessing nodes in the tree is equivalent to
accessing an element in an array.
When implementin a binary tree using an array, we pack the tree tightly in the array:

• The tree’s root uses index 0.
• The root’s left child uses index 1; the root’s right child uses index 2.
• In general, if a node uses index K in the array, the node’s left child uses index 2K + 1

and the node’s right child uses index 2K + 2.
Please fill in the missing code below. The listing implements a binary tree of integers
using an array. Because we create the array of integers when the tree is created (in the
BTree create() function), we need a special value to indicate whether each element in the
array is used or not. In our implementation, we use the constant EMPTY for this purpose.
You must use the EMPTY macro in your code. You will lose 1 point if you use -1 when you
should use EMPTY. The reason is that the value of EMPTY may change.
Hint: The implementation for printing in order (BTree printInOrder() and its helper
BTree printHelp()) may help you understand how to implement the missing code.

#include <stdio.h>1
#include <stdlib.h>2

3
/* In C programs , #define creates a "macro". */4

5
#define EMPTY -16
#define NUM_VALUES 107
#define TREE_HEIGHT 88
#define TRUE 19
#define FALSE 010

11
typedef struct {12

int height , size;13
int *data;14

} BTree;15
16

BTree *BTree_create(int height)17
{18

int i;19
BTree *btree = malloc(sizeof(BTree));20
btree ->height = height;21
btree ->size = (1 << height) - 1;22

12

btree ->data = malloc(sizeof(int) * btree ->size);23
for (i = 0; i < btree ->size; i++) {24

btree ->data[i] = EMPTY;25
}26
return btree;27

}28
29

/* Insert an integer into a binary tree implemented using an30
* array. This function returns no value. Inserting in such a binary31
* tree proceeds as follows:32
* 1. Start at index 0 (the root of the tree).33
* 2. Repeat if data[index] is not EMPTY34
* - Read the current value at this node (data[index])35
* - If value to be inserted is equal , we are done , return36
* - If value to be inserted is smaller , go left (2 * index + 1)37
* - If value to be inserted is greater , go right (2 * index + 2)38
* 3. We found the correct place (it is EMPTY), so update data[index]39
* to value to be inserted.40
*41
* You must use EMPTY in the code. You will lose 1 point if you use42
* -1 when you should use EMPTY.43
*44
* NOTE: This function can either be implemented recursively or45
* iteratively (using a while loop). The choice of how to implement46
* this is up to you.47
*48
* NOTE: You do NOT have to check if the new node goes beyond the size49
* of the tree! No bounds -checking is required. Assume all items50
* will fit within the size of the tree.51
*/52

void BTree_insert(BTree *tree , int value)53
{54

// FILL IN CODE BELOW !!! (1.5 points)55
56
57
58
59
60
61
62
63
64

13

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

}84
85

/* Determine whether or not a particular value exists in a binary tree86
* implemented using an array. Return TRUE if the value exists in the87
* tree , and FALSE if not. Searching for a value in such a binary88
* tree proceeds as follows:89
* 1. Start at index 0 (the root of the tree).90
* 2. Repeat if data[index] is not EMPTY91
* - Read the current value at this node (data[index])92
* - If the value is equal to the current value , return TRUE93
* - If the searched value is smaller , go left (2 * index + 1)94
* - If the searched value is greater , go right (2 * index + 2)95
* 3. If we reach this point , this means we came across an empty node96
* in the tree and thus the value does not exist. Return FALSE.97
*98
* You must use the macros EMPTY , TRUE , and FALSE. You will lose 199
* point if you use numbers when you should use macros.100
*101
* NOTE: This function can either be implemented recursively or102
* iteratively (using a while loop). The choice of how to implement103
* this is up to you.104
*105
* NOTE: You do NOT have to check if the new node goes beyond the size106

14

* of the tree! No bounds -checking is required. Assume all items107
* will fit within the size of the tree.108
*109
* You MUST use the properties of a binary search tree. You will110
* receive no point if your program goes through every element in the111
* array.112
*/113

int BTree_contains(BTree *tree , int value)114
{115

// FILL IN CODE BELOW !!! (1.5 points)116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

}140
141

void BTree_printHelp(BTree *tree , int ndx)142
{143

if (tree ->data[ndx] == EMPTY) return;144
BTree_printHelp(tree , 2 * ndx + 1);145
printf ("%d ", tree ->data[ndx]);146
BTree_printHelp(tree , 2 * ndx + 2);147

}148

15

149
void BTree_printInOrder(BTree *tree)150
{151

BTree_printHelp(tree , 0);152
printf ("\n");153

}154
155

void BTree_destroy(BTree *tree)156
{157

free(tree ->data);158
free(tree);159

}160
161

int main(int argc , char **argv)162
{163

int values[NUM_VALUES] = { 3, 2, 7, 6, 4, 9, 8, 10, 1, 5 };164
int i;165
BTree *tree = BTree_create(TREE_HEIGHT);166
for (i = 0; i < NUM_VALUES; i++) {167

BTree_insert(tree , values[i]);168
}169
BTree_printInOrder(tree);170
int exists = TRUE;171
for (i = 0; i < NUM_VALUES; i++) {172

exists &= BTree_contains(tree , values[i]);173
}174
printf (" Check that all nodes exist = %d (should be 1)\n", exists);175
BTree_destroy(tree);176
return EXIT_SUCCESS;177

}178

The output for the above program is a sorted list of integers (as is to be expected):

$./q3

1 2 3 4 5 6 7 8 9 10

Check that all nodes exist = 1 (should be 1)

16

