
ECE264 Spring 2013
Exam 2, March 21, 2013

In signing this statement, I hereby certify that the work on this exam is my
own and that I have not copied the work of any other student while complet-
ing it. I also declare that I will not discuss/share this exam with anybody
on March 21, 2013. I understand that, if I fail to honor this agreement, I
will receive a score of ZERO for this exam and will be subject to possible
disciplinary action.

Signature:

You must sign here. Otherwise you will receive a 2-point penalty.

Read the questions carefully.

You must return all pages before you leave the room. Otherwise,
your exam will receive a 3-point penalty.

This is an open-book, open-note exam. You may use any book, notes, or program printouts.
No personal electronic device is allowed. You may not borrow books from other students.

Three learning objectives (recursion, structure, and dynamic structure) are tested in this
exam. To pass an objective, you must receive 50% or more points in the corresponding
question.

Questions (Total 15 points)

1. recursion (5 points)

2. structure (5 points)

3. linked list (5 points)

1

Contents

1 Recursion 3
1.1 Recursive Relation (2 points) . 4
1.2 Integer Partition (3 points) . 5

2 Structure 7

3 Linked List 11

Learning Objective 1 (Recursion) Pass Fail

Learning Objective 3 (Structure) Pass Fail

Learning Objective 4 (Dynamic Structure) Pass Fail

Total

2

1 Recursion

For a given positive integer, we want to partition it into the sum of some positive integers,
or itself. For example, 1 to 4 can be partitioned as

1 = 1 2 = 1 + 1 3 = 1 + 1 + 1 4 = 1 + 1 + 1 + 1

= 2 = 1 + 2 = 1 + 1 + 2

= 2 + 1 = 1 + 2 + 1

= 3 = 1 + 3

= 2 + 1 + 1

= 2 + 2

= 3 + 1

= 4

5 = 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 2

1 + 1 + 2 + 1

1 + 1 + 3

1 + 2 + 1 + 1

1 + 2 + 2

1 + 3 + 1

1 + 4

2 + 1 + 1 + 1

2 + 1 + 2

2 + 2 + 1

2 + 3

3 + 1 + 1

3 + 2

4 + 1

5

We observe that there exists
• One way to partition 1.
• Two ways to partition 2.
• Four ways to partition 3.
• Eight ways to partition 4.

In general, there are 2n−1
ways to partition value n. You do not have to prove this.

Also by observation, we find
• One way to partition 1 using only odd numbers, i.e., itself
• One way to partition 2 using only odd numbers, i.e., 1 + 1. The value 2 cannot be

used because it is an even number.

3

• Two ways to partition 3 using only odd numbers, i.e., 1 + 1 + 1 and 3 itself.
• Three ways to partition 4 using only odd numbers, i.e.,

1 + 1 + 1 + 1,
1 + 3, and
3 + 1.

1.1 Recursive Relation (2 points)

How many ways can you partition value n using only odd numbers? Write down the general
rule. You can write down a recursive form. You do not need to write the closed form.
Hint: Consider whether n is an odd number or an even number.

4

1.2 Integer Partition (3 points)

Consider the following program. Make necessary changes to the program below so that the
numbers are increasing.
For example, to partition the value 6, the following are allowed

1 + 2 + 3

1 + 5

2 + 4

6

The following are not allowed

1 + 3 + 2

1 + 4 + 1

2 + 2 + 2

2 + 3 + 1

4 + 2

5 + 1

Please notice that 2 + 2 + 2 is not allowed.

#include <stdio.h>1
#include <stdlib.h>2

3
void printPartition(int * arr , int len)4
{5

int iter;6
if (len == 0)7

{8
return;9

}10
for (iter = 0; iter < len - 1; iter ++)11

{12
printf ("%d + ", arr[iter]);13

}14
printf ("%d\n", arr[len - 1]);15

}16
17

void recursivePartition(int * arr , int ind , int val)18
{19

int iter;20
if (val == 0)21

{22
printPartition(arr , ind);23

5

}24
for (iter = 1; iter <= val; iter ++)25

{26
arr[ind] = iter;27
recursivePartition(arr , ind + 1, val - iter);28

}29
}30
void partition(int value)31
{32

printf (" partition %d\n", value);33
int * arr = malloc(sizeof(int) * value);34
recursivePartition(arr , 0, value);35
free (arr);36

}37
38

int main(int argc , char ** argv)39
{40

int val;41
printf (" Enter a number: ");42
scanf ("%d", & val);43
if (val > 1)44

{45
partition(val);46

}47
return EXIT_SUCCESS;48

}49

6

2 Structure

Structures in C, signified by the keyword struct, are used to create new record data types
consisting of primitive types (such as integers, characters, strings, etc) as well as structures.
This can be used to improve weaknesses in the C programming language. One such weakness
is the fact that C arrays are fixed in size. We have already seen linked lists that address
this weakness (in fact, Question 3 is about linked lists). Another solution is to create a
dynamically resized array that grows as the number of integers being inserted into it grows.
Here is how this will work. Instead of using a standard int *data array that is not resizable,
we will create a slightly more complex data structure (using struct) that contains not just
int *data, but also two “bookkeeping” variables:

• size - the current size of the data array.

• used - the number of elements in data used out of the total available size elements.

When a new integer is added to the end of our dynamically resizable array (using a particular
function), we will first check whether used != size.

• If they are different, we can proceed to add the new element at position used in data

and increment used by one.

• If used == size, we have run out of room in the current array and need to allocate
more space.

The new array’s size is twice that of the old size. Of course, when we create an entirely new
array, we must remember to copy the contents of the old array into the first size elements
of the new array. We must also remember to release the memory of the old array (free) and
update the size variable to the new size.
Please add the missing code to implement this structure. When copying data from one array
to the next, you may use the built-in memcpy function instead of using for loops; see the end
of this question for an excerpt from man memcpy.

#include <stdio.h>1
#include <string.h>2
#include <stdlib.h>3

4
#define NUM_INSERTS 325

6
typedef struct {7

int *data; /* this is the array contents */8
unsigned int used; /* number of used items in data */9
unsigned int size; /* full size of data array */10

} DynArray;11
12

7

/* Create a new dynamic resizable array (DynArray) with a specified13
* initial size given in the input argument. First , allocate space14
* for the DynArray structure. Then , allocate space for the initial15
* size of the array. Initialize the size and the number of used16
* elements. Returns the newly created dynamic array structure.17
*/18

DynArray *DynArray_create(int initialSize)19
{20

// === FILL IN CODE HERE! === (2 points)21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

}37
38

/* Destroy the dynamic memory associated with a dynamic array.39
Remember to free both the array and the structure holding it (and40
in the right order).41

*/42
void DynArray_destroy(DynArray *array)43
{44

// === FILL IN CODE HERE! === (1 point)45
46
47
48
49
50
51

}52
53

/*54

8

* Add an integer to the end of the dynamic array. This is done by55
* adding the integer argument to the current "used" index in the56
* list , and the used index is then incremented.57
*58
* Check whether the used index has gone beyond the current size of59
* the list (this happens when used == size). If this happens , create60
* a new array that is twice the size of the current one , copy the61
* contents from the old array into the new one , free the memory used62
* by the old array , and then assign the data pointer to the new63
* array.64
*65
*/66

void DynArray_add(DynArray *array , int element)67
{68

// === FILL IN CODE HERE! === (2 points)69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

}84
85

int main(int argc , char *argv [])86
{87

int i;88
DynArray *array = DynArray_create (10);89
for (i = 0; i < NUM_INSERTS; i++) {90

DynArray_add(array , i);91
}92
printf ("used: %d, size: %d\n", array ->used , array ->size);93
for (i = 0; i < array ->used; i++) {94

printf ("%d ", array ->data[i]);95
}96

9

DynArray_destroy(array);97
return EXIT_SUCCESS;98

}99

The output after running this program is as follows:

$./array

used: 32, size: 40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30 31

Here follows an excerpt from man memcpy, which might be useful when copying the contents
from the old array into the new array in DynArray add;

void *memcpy(void *restrict s1, const void *restrict s2, size_t n);

DESCRIPTION

The memcpy() function copies n bytes from memory area s2 to memory area

s1. If s1 and s2 overlap, behavior is undefined. Applications in which

s1 and s2 might overlap should use memmove(3) instead.

RETURN VALUES

The memcpy() function returns the original value of s1.

10

3 Linked List

Consider the following program to sort a linked list (in the ascending order). The person
that wrote this program made mistakes in the insertInOrder function and the sortHelper

function.
Briefly explain your answer. Do not write a one-page essay.
Your responsibility is to

• Identify and correct the problems (both functions).

• Consider the mistake in the insertInOrder function and assume the sortHelper

function is correct. What is the output of this program?

• Consider the mistake in the sortHelper function and assume the insertInOrder

function is correct. What is the output of this program?

#include <stdio.h>1
#include <stdlib.h>2
typedef struct listnode3
{4

int value;5
struct listnode * next;6

} Node;7
/* --8
* insert newNode into the sorted list (in the9
* return the first node of the sorted list10
*/11

Node * insertInOrder(Node * newNode , Node * sorted)12
{13

/* If the new node does not exist , return the originally sorted14
list */15

if (newNode == NULL)16
{17

return sorted;18
}19

/* If the originally sorted list is empty , the new sorted list has20
only one node */21

if (sorted == NULL)22
{23

newNode -> next = newNode;24
return newNode;25

}26
/* If the new node should be before the remaining of the sorted27

list */28

11

if ((sorted -> value) > (newNode -> value))29
{30

newNode -> next = sorted;31
return newNode;32

}33
/* The new node should be after the current node of the originally34

sorted list , insert the new node after this current node */35
sorted -> next = insertInOrder(newNode , sorted -> next);36
return sorted;37

}38
/* --39
* The function has two arguments: the first node of an unsorted list40
* and the first node of a sorted list.41
*42
* This function recursively takes one node out from the unsorted list43
* and inserts this node into the sorted list , until all nodes in the44
* unsorted list have been removed and inserted into the sorted list.45
*46
* When there is no node in the unsorted list , this function returns47
* the first node of the sorted list.48
*/49

Node * sortHelper(Node * unsorted , Node * sorted)50
{51

if (unsorted == NULL)52
{53

return sorted;54
}55

/* insert the first node from the unsorted list to the sorted56
list */57

sorted = insertInOrder(unsorted , sorted);58
/* insert the rest of the unsorted list into the sorted list */59
return sortHelper(unsorted -> next , sorted);60

}61
/* --62
* The input is the first node of the list.63
*64
* The function returns the first node of a sorted list65
* (by the values)66
*/67

Node * sortList(Node * head)68
{69

/* The sorted list starts as an empty list (NULL) */70

12

return sortHelper(head , NULL);71
}72
/* -- */73
Node * insertFront(Node * head , int value)74
{75

Node * n = malloc(sizeof(Node));76
n -> value = value;77
n -> next = head;78
return n;79

}80
/* -- */81
void printList(Node * head)82
{83

if (head == NULL)84
{85

printf ("\n\n");86
return;87

}88
printf ("%d ", head -> value);89
printList(head -> next);90

}91
/* -- */92
#define ARRAY_LENGTH 1093
int main(int argc , char * * argv)94
{95

int values[ARRAY_LENGTH] = {6, 4, 8, 3, 1, 7, 2, 5, 0, 9};96
Node * head = NULL;97
int iter;98
for (iter = 0; iter < ARRAY_LENGTH; iter ++)99

{100
head = insertFront(head , values[iter]);101

}102
/* Hint: calling printList(head) now would print103

9 0 5 2 7 1 3 8 4 6 */104
head = sortList(head);105
printList(head);106
/* The output here should be sorted:107

0 1 2 3 4 5 6 7 8 9 */108
return EXIT_SUCCESS;109

}110

13

