
ECE 264 Exam 2

6:30-7:30PM, March 9, 2011

I certify that I will not receive nor provide aid to any other student for this exam.

Signature:

You must sign here. Otherwise you will receive a 1-point penalty.

Read the questions carefully.

Please write legibly. Your exam is not graded if your writing is hard to read.

This exam is printed double sided. Please read the questions carefully. Two common mistakes
are answering a wrong question and failing to answer all questions.

This is an open-book, open-note exam. You can use any book or note or program printouts.
Please turn off your cellular phone and iPod. No electronic device is allowed.

Outcomes 2 and 3 are tested in this exam. To pass an outcome, you must receive 50% or more
points in the corresponding questions.

1

Contents

1 Structure (Outcome 2, 5 points) 4

2 Linked List (Outcome 3, 7 points) 7

3 File (3 points) 11

Passed Outcomes: outcome 2 outcome 3

Total Score: out of 15.

2

This page is blank. You can write answers here.

3

1 Structure (Outcome 2, 5 points)

Assume you have a C structure for a student database with this definition:

typedef struct {
char *name; // name of student
int year; // birth year

} Student;

Please fill in your answers to the questions in the skeleton code given below.
Hint: The functions may be useful:

strcpy(char *dest, const char *src)
strdup(const char *s)
size_t strlen(const char *s);
malloc(size_t size)
free(void * ptr)

You can treat size t as int.

(a) Write a constructor function that allocates a new Student record (i.e. object) and fills it with
data passed as arguments.

(b) Write a function for retrieving the name of a student from a student record.

(c) Write a function for retrieving the year of a student from a student record.

(d) Write a function for copying a student record. Bear in mind that the copy should be deep,
i.e., you will need to duplicate strings and not just their pointers.

(e) Write a function for deallocating all of the memory associated with a Student, including the
Student record itself. Remember to deallocate all strings as well.

Student *Student_create(char *name, int year)
{

/* === (a) Create a new student record (1.7 point) */

}

4

char *Student_getName(Student *s)
{

/* === (b) Retrieve the name for a student record (0.4 point) */

}

int Student_getYear(Student *s)
{

/* === (c) Retrieve the birth year for a student record (0.4 point) */

}

Student *Student_clone(Student *s)
{

/* === (d) Copy a student record (deep copy) (1.6 point) */
/* The new Student object should not share memory with the argument s */

}

5

void Student_destroy(Student *s)
{

/* === (e) Deallocate all memory for a student record (0.9 point) */

}

int main(int argc, char **argv)
{

Student *s1 = Student_create("John Doe", 1985);
printf("Name: %s, Year: %d\n", Student_getName(s1),

Student_getYear(s1));
/* Name: John Doe, Year: 1985 */

Student *s2 = Student_clone(s1);
printf("Name: %s, Year: %d\n", Student_getName(s2),

Student_getYear(s2));
/* Name: John Doe, Year: 1985 */

strcpy(s2 -> name, "Amy");
s2 -> year = 1990;
printf("Name: %s, Year: %d\n", Student_getName(s2),

Student_getYear(s2));
/* Name: Amy, Year: 1990 */

printf("Name: %s, Year: %d\n", Student_getName(s1),
Student_getYear(s1));

/* Name: John Doe, Year: 1985 */

Student_destroy(s1);
Student_destroy(s2);

return 0;
}

6

2 Linked List (Outcome 3, 7 points)

Assume you have a C structure for a linked list of integers with this definition:

/* Node.h */
struct Node {

int value;
struct Node *next;

};

Implement the missing code for the below four functions for inserting values at the beginning,
end, and at a specific index in a linked list of integers. You may use the provided functions.

#include <stdlib.h>
#include <stdio.h>

#include "Node.h"

struct Node *Node_create(int value)
{
struct Node *node = malloc(sizeof(struct Node));
node->value = value;
node->next = NULL;
return node;

}

void Node_destroy(struct Node *n)
{

free(n);
}

void List_destroy(struct Node *head)
{

struct Node * p;
while (head != NULL)
{

p = head;
head = head -> next;
free(p);

}
}

void List_print(struct Node *head)
{

while (head != NULL)
{

printf("%d ", head->value);

7

head = head->next;
}

printf("\n");
}

struct Node *List_insertFront(struct Node *head, int value)
{

/* Insert an element (i.e. a Node) with an integer value at the
beginning of the list. */

/* head = the first element of the original list */
/* value = the value of a new element of the list */
/* The original list may be empty */
/* Returns the pointer to the first element. */
/* === FILL IN CODE BELOW (1 point) */

}

struct Node *List_insertBack(struct Node *head, int value)
{

/* Insert an element (i.e. a Node) with an integer value at the end of
the list. */

/* head = the first element of the original list */
/* value = the value of a new element of the list */
/* The original list may be empty */
/* Returns the pointer to the first element. */
/* === FILL IN CODE BELOW (2 points) */

8

}

struct Node *List_insertAt(struct Node *head, int index, int value)
{

/* Inserts an element (i.e. a Node) with an integer value at a
specific location, specified by the index, in list. */

/* If index is negative, the new element is at the beginning of the
list */

/* If index is larger than the list’s length, the new element is
at the end of the list. */

/* Returns the pointer to the first element. */
/* Hint: you can use List_insertFront and List_insertBack */
/* === FILL IN CODE BELOW (2 points) */

}

struct Node *List_reverse(struct Node *head)
{

/*
NOTE: This function should

===NOT=== allocate any new memory.

*/

9

/* Reverse the integer values in the list so that the order of the
element is reverse. */

/* If a Node is the first element in the original list, this Node
becomes the last element in the new list */

/* If the head pointer is NULL, this function returns NULL. */
/* Returns the pointer to the new (reversed) list. */

/* === FILL IN CODE BELOW (2 points) */

}

int main(int argc, char *argv[])
{

struct Node *head = NULL;

head = List_insertFront(head, 42);
head = List_insertFront(head, 10);
List_print(head); /* Output: 10 42 */

head = List_insertBack(head, 66);
List_print(head); /* Output: 10 42 66 */

head = List_insertAt(head, 0, 1);
head = List_insertAt(head, 70, 72);
head = List_insertAt(head, -9, 0);
List_print(head); /* Output: 0 1 10 42 66 72 */

head = List_reverse(head);
List_print(head); /* Output: 72 66 42 10 1 0 */
List_destroy(head);
return 0;

}

10

3 File (3 points)

The most basic file reading operation is fgetc that reads a single character from a file record
pointer. It has the following function prototype:

int fgetc (FILE *stream);

• stream: Pointer to a FILE object that identifies the stream the character is to be read from.

• Return value: fgetc() reads the next character from stream and returns it as an unsigned
char cast to an int, or EOF on end of file or error.

We want to implement a new function that reads more than just one character. This function is

int fgetLine (char *buf, int n, FILE *stream);

The function reads a line from a text file. A line is defined as a sequence of (i) at most (n - 1)
characters or (ii) until a newline (’\n’) is found. The characters, in case (ii) including the newline,
are stored in an array called buf. A ’\0’ character is appended to the end of the string. The function
fgetLine does not check whether buf has enough space. This is the caller’s responsibility.

• buf: An array of characters. It stores the characters read from the file.

• n: At most (n - 1) characters are read from the file.

• stream: Pointer to a FILE object that identifies the stream the character is to be read from.

• Return value: fgetLine returns the number of characters read from the file.

Please implement this fgetLine function.
Hint: Since fgetc casts a character to an integer, you can assign the return value of fgetc to a
character:

char ch;
FILE * fhd;
fhd = fopen(.......);
......
ch = fgetc(fhd);

11

#include <stdio.h>
int fgetLine(char *buf, int n, FILE *fhd)
{

}

int main(int argc, char **argv)
{

if (argc < 2)
{

return -1;
}

FILE *f = fopen(argv[1], "r");
const int BUFFER_SIZE = 10;
char buffer[BUFFER_SIZE];
while (fgetLine(buffer, BUFFER_SIZE, f) != 0)

{
printf("%s", buffer);

}
fclose(f);
return 0;

}

12

