
ECE 264 Advanced C Programming

Contents

1 Complexity 1

2 Design Fast Algorithms 2

3 Quicksort 3

1 Complexity

In a binary search tree, how many nodes do we need to check in order to determine
whether a value is currently stored in the tree (the BTree search function)? Let’s ask a
different question first. How many nodes does a tree have if the tree has n levels? In the
first level (the root), there is only one node. The next level has at most two nodes. The
third level can have up to four nodes.

level node
1 1
2 2
3 4
4 8
... ...
n 2n−1

total 2n − 1

If a binary search tree is complete and balanced, searching a tree of 2n − 1 nodes requires
visiting at most n levels. We can eliminate half of the remaining nodes in each step. To
put it in another way, searching a tree of n nodes requires visiting only ≈ lg n nodes; here
lg is the logarithm function using 2 as the base, namely lg n = log

2
n. We usually write log

using 10 as the base, log n = log
10

n.

If we use a binary search tree to sort a sequence of numbers, what is the complexity? What
do we mean by using a tree to sort? We can insert these numbers one by one and then use

ECE264 Purdue University, Lecture 21 1 Yung-Hsiang Lu

in-order to print the numbers. If the tree is always balanced after inserting i− 1 numbers,
inserting the ith number has to visit only ≈ lg(i − 1) nodes. Therefore, the complexity is

≈

n∑

i=2

lg(i − 1). (1)

Let’s simplify it by finding an upper bound. We know lg x < lg y if 1 < x < y. Thus,

n∑

i=2

lg(i − 1) <

n∑

i=2

lg(n) < n lg n. (2)

Sorting n numbers using a binary search tree requires n lg n steps.

This is much better than n2 using a linked list. This assumes that the tree is always bal-
anced. In reality, wemay not be that lucky. Let’s consider the situation when the sequence
is already sorted in descending order. When we insert the numbers, only the left subtrees
are used and inserting the ith number has to visit i − 1 nodes. As a result, it takes ≈ n2 to
sort the numbers. Similarly, if the numbers are sorted in ascending order, only the right
subtress are used and the complexity is also n2. For the average cases, we assume the
numbers are not ordered and the tree is “somewhat” balanced, the complexity is n lg n.
The detailed analysis is beyond the scope of ECE 264.

2 Design Fast Algorithms

Why is it faster to use a binary search tree to sort than to use a linked list? This reveals a
basic principle in designing faster algorithms:

avoid redundant computation.

Why is it slower to compute Fibonacci numbers by using

int Fibonacci(int n)
{

if (n == 0) { return 0; }
if (n == 1) { return 1; }
return (Fibonacci(n - 1) + Fibonacci(n - 2));

}

ECE264 Purdue University, Lecture 21 2 Yung-Hsiang Lu

We compute f(k), 1 ≤ k < n many times. We should remember what we have done and
do not repeat the computation.

When we sort numbers using a linked list, we repeat some computation again and again.
The list is already sorted. Why do we start from the very beginning for every insertion?
Why can’t we jump to somewhere that is closer to the final location of the new number?
That is the idea of a binary search tree. If the new number is larger than some numbers
already in the tree, it is unnecessary to compare with these numbers one by one.

3 Quicksort

If we can sort numbers using a binary search tree in n lg n steps, can we sort even faster
using an array? Remember that in an array, we can retrieve any element in a single step.
In a binary tree (or a linked list), we have to visit nodes one by one. There are many ways
to sort numbers sorted in an array using n lg n steps. Here, we introduce a method called
quicksort.

#include <stdio.h>

void swap(int *a, int *b)
{

int t = *a;

*a = *b;

*b = t;
}
void sort(int arr[], int beg, int end)
{

if (end > beg + 1)
{
int piv = arr[beg];
int l = beg + 1;
int r = end;
while (l < r)

{
if (arr[l] <= piv)

{ l++; }
else

{ swap(&arr[l], &arr[--r]); }
}

swap(&arr[--l], &arr[beg]);
sort(arr, beg, l);

ECE264 Purdue University, Lecture 21 3 Yung-Hsiang Lu

sort(arr, r, end);
}

}

int main(int argc, char * argv[])
{

int data[] = {5, 4, 3, 9, -1, 0, 4, 3, 2, 11, 7, 6, 8, 9, 14};
int length = sizeof(data)/ sizeof(int);
int index;
sort(data, 0, length);
for (index = 0; index < length; index ++)

{
printf("%d ", data[index]);

}
printf("\n");
return 0;

}

The basic concept is the same: avoid redundant work. C has a built-in function for quick-
sort. In the lecture for March 11, we already used it:

#include <time.h>
#include <stdio.h>
#include <stdlib.h>
int search1(int data[], int size, int value);
int search2(int data[], int size, int value);

void print(int data[], int size)
{

int ind;
for (ind = 0; ind < size; ind ++)

{
printf("%d ", data[ind]);

}
printf("\n");

}

int compare(const void * p1, const void * p2)
/* comparison function needed by qsort */
{

int v1 = * (const int *) p1;
int v2 = * (const int *) p2;
if (v1 > v2) { return 1; }

ECE264 Purdue University, Lecture 21 4 Yung-Hsiang Lu

if (v1 < v2) { return -1; }
return 0;

}

int main(int argc, char * argv[])
{

int numElement = 0;
srand(time(0));
if (argc > 1)

{
numElement = (int)strtol(argv[1], (char **)NULL, 10);

}
if (numElement < 100) { numElement = 100; }
int * data = malloc(numElement * sizeof(int));
int ind;
/* initialize the elements */
for (ind = 0; ind < numElement; ind ++)

{
data[ind] = numElement - ind;

}
print(data, numElement);
int value = rand() % (5 * numElement);
printf("search %d, index = %d\n\n", value,

search1(data, numElement, value));
qsort(data, numElement, sizeof(int), compare);
/* qsort (quicksort) is provided by C but we have to provide a

comparison function. Please check the manual for details */
print(data, numElement);
printf("search %d, index = %d\n", value,

search2(data, numElement, value));
/* The index may be different from search1 because the elements have

been sorted. */
free (data);
return 0;

}

To use C’s quicksort function, we have to provide a compare function. This allows us
to use quicksort for sorting strcutres.

ECE264 Purdue University, Lecture 21 5 Yung-Hsiang Lu

