
ECE 264 Advanced C Programming

Contents

1 Complexity 1

2 Recursion and Complexity 2

3 From 2n to lg n 8

1 Complexity

What is the complexity of sorting using linked lists? Let’s consider three scenarios:

• The input values are already sorted from the smallest to the largest.

• The input values are already sorted from the largest to the smallest.

• The input values are not sorted and the order is random.

In the first scenario, when a new value is added, it is larger than all values already in the
list. Therefore, every time a number is inserted, we have to go through all existing nodes.
Suppose there are n numbers to be inserted. When we insert ith number (1 ≤ i ≤ n), we
have to go through i− 1 nodes. The total number of nodes we have visited after inserting
n numbers is

n
∑

i=1

(i − 1) =
n(n − 1)

2
. (1)

This is ≈ n2.

In the second scenario, when a new value is inserted, it is always smaller than any existing
value in the list. Therefore, this new value is always inserted at the beginning of the list.
Only one node is checked for each insertion and the complexity is ≈ n.

ECE264 Purdue University, Lecture 17 1 Yung-Hsiang Lu

In the third scenario, we do not know howmany nodes to check. On average, we need to
check half way of the nodes already in the list and the complexity is

n
∑

i=1

i − 1

2
=

n(n − 1)

4
. (2)

This is also ≈ n2. Hence, the complexity is ≈ n2 using a linked list for sorting.

2 Recursion and Complexity

Why do we care about complexity? There are several reasons. (1) We write computer
programs to compute and to computer fast. Many programs have time constraints. For
example, weather forecast has to predict a storm before the storm arrives. Banking pro-
grams have to finish all transactions before the next business day starts. If you do on-line
shopping, you certainly want to find the items within a few seconds. If you are designing
an autonomous vehicle, you need to recognize an obstacle before a collision. All these ex-
amples require fast computer programs. (2) Complexity is important but most students
have not seen it. This may be the first time for most of you to learn complexity analysis.
(3) The most important reason is that you can easilywrite programs that are terribly slow.

We can use recursion to implement binary search and can eliminate about half of the
elements in one step. We divide the problem into two parts with the confidence that one
half can be completely ignored.

Sometimes, we may use recursion inefficiently. Fibonacci numbers are an example.

f(n) =











0 if n = 0

1 if n = 1

f(n − 1) + f(n − 2) if n > 1.

(3)

and a simple, straightforward implementation

#include <stdlib.h>
#include <stdio.h>
unsigned int Fibonacci(unsigned int n)
{

if (n == 0) { return 0; }
if (n == 1) { return 1; }
return (Fibonacci(n - 1) + Fibonacci(n - 2));

ECE264 Purdue University, Lecture 17 2 Yung-Hsiang Lu

}

int main(int argc, char * argv[])
{

unsigned int n;
if (argc < 2)

{
printf("need a number\n");
return -1;

}
n = strtol(argv[1], (char **)NULL, 10);
printf("f(%d) = %d\n", n, Fibonacci(n));
return 0;

}

Let’s consider calling f(5). This call is computed by calling f(4) + f(3). The former is
computed by calling f(3) + f(2). Therefore, we can write

f(5) = f(4) + f(3) = (f(3) + f(2)) + f(3) = 2f(3) + f(2).

We can continue to compute

f(3) = f(2) + f(1)

and

f(5) = 2f(3) + f(2) = 2(f(2) + f(1)) + f(2) = 3f(2) + 2f(1) = 3(f(1) + f(0)) + 2f(1) =
5f(1) + 3f(0).

What is the problem? We are calling f(2) three times and each time it calls f(1) + f(0).
Let’s see how many times f(i) is called for computing f(n) when 0 < i < n.

/* fabonacci.c */
#include <stdlib.h>
#include <stdio.h>
const int maxN = 50;
int * callCounter;
unsigned int Fibonacci(unsigned int n)
{

callCounter[n] ++;
if (n == 0) { return 0; }
if (n == 1) { return 1; }
return (Fibonacci(n - 1) + Fibonacci(n - 2));

}

ECE264 Purdue University, Lecture 17 3 Yung-Hsiang Lu

int main(int argc, char * argv[])
{

int cnt;
callCounter = malloc(maxN * sizeof(int));
for (cnt = 0; cnt < maxN; cnt ++)

{
callCounter[cnt] = 0;

}
Fibonacci(maxN - 1);
for (cnt = 0; cnt < maxN; cnt ++)

{
printf("callCounter[%2d] = %d\n",

cnt, callCounter[cnt]);
}

free (callCounter);
return 0;

}
/*

callCounter[0] = 2584
callCounter[1] = 4181
callCounter[2] = 2584
callCounter[3] = 1597
callCounter[4] = 987
callCounter[5] = 610
callCounter[6] = 377
callCounter[7] = 233
callCounter[8] = 144
callCounter[9] = 89
callCounter[10] = 55
callCounter[11] = 34
callCounter[12] = 21
callCounter[13] = 13
callCounter[14] = 8
callCounter[15] = 5
callCounter[16] = 3
callCounter[17] = 2
callCounter[18] = 1
callCounter[19] = 1

*/

As you can see, to compute f(19), f(5) is called 610 times. Each time it is computed by
calling f(4), f(3),, f(0). If you look at the numbers carefully, callCounter[19] is

ECE264 Purdue University, Lecture 17 4 Yung-Hsiang Lu

actually f(1), callCounter[18] is f(2), callCounter[17] is f(3). For any value i,
f(i) does not change. Why can’t we compute f(i) once and remember its value? We do
not have to compute f(i) over and over again.

/* compare.c */
#include <sys/time.h>
#include <stdlib.h>
#include <stdio.h>
const int maxN = 46;
unsigned int Fibonacci1(unsigned int n)
{

if (n == 0) { return 0; }
if (n == 1) { return 1; }
return (Fibonacci1(n - 1) + Fibonacci1(n - 2));

}

unsigned int Fibonacci2(unsigned int n)
{

unsigned int * f;
unsigned int cnt;
unsigned int result;
f = malloc((n + 2) * sizeof(unsigned int));
f[0] = 0;
f[1] = 1;
for (cnt = 2; cnt <= n; cnt ++)

{
f[cnt] = f[cnt - 1] + f[cnt - 2];

}
result = f[n];
free (f);
return result;

}

int main(int argc, char * argv[])
{

int cnt;
struct timeval t1;
struct timeval t2;
int f1;
int f2;
for (cnt = 0; cnt < maxN; cnt ++)

{
gettimeofday(& t1, NULL);

ECE264 Purdue University, Lecture 17 5 Yung-Hsiang Lu

f1 = Fibonacci1(cnt);
gettimeofday(& t2, NULL);
printf("n = %2d, F1 %9f sec = %10d",

cnt,
(t2.tv_sec - t1.tv_sec) +
1e-6 * (t2.tv_usec - t1.tv_usec),
f1);

gettimeofday(& t1, NULL);
f2 = Fibonacci2(cnt);
gettimeofday(& t2, NULL);
printf(", F2 %9f sec = %10d\n",

(t2.tv_sec - t1.tv_sec) +
1e-6 * (t2.tv_usec - t1.tv_usec),
f2);

}
return 0;

}

We implement Fibonacci again in Fibonacci2 using bottom-up. The value of f(i) for
each i is calculated once only. Is that faster? Let’s execute this program and see the
difference.

/∗
n = 0 , F1 0 .000001 sec = 0 , F2 0 .000057 sec = 0
n = 1 , F1 0 .000000 sec = 1 , F2 0 .000001 sec = 1
n = 2 , F1 0 .000001 sec = 1 , F2 0 .000001 sec = 1
n = 3 , F1 0 .000000 sec = 2 , F2 0 .000001 sec = 2
n = 4 , F1 0 .000001 sec = 3 , F2 0 .000001 sec = 3
n = 5 , F1 0 .000001 sec = 5 , F2 0 .000001 sec = 5
n = 6 , F1 0 .000001 sec = 8 , F2 0 .000001 sec = 8
n = 7 , F1 0 .000001 sec = 13 , F2 0 .000001 sec = 13
n = 8 , F1 0 .000002 sec = 21 , F2 0 .000001 sec = 21
n = 9 , F1 0 .000001 sec = 34 , F2 0 .000000 sec = 34
n = 10 , F1 0 .000002 sec = 55 , F2 0 .000000 sec = 55
n = 11 , F1 0 .000003 sec = 89 , F2 0 .000001 sec = 89
n = 12 , F1 0 .000005 sec = 144 , F2 0 .000001 sec = 144
n = 13 , F1 0 .000008 sec = 233 , F2 0 .000000 sec = 233
n = 14 , F1 0 .000012 sec = 377 , F2 0 .000001 sec = 377
n = 15 , F1 0 .000019 sec = 610 , F2 0 .000001 sec = 610
n = 16 , F1 0 .000031 sec = 987 , F2 0 .000001 sec = 987
n = 17 , F1 0 .000049 sec = 1597 , F2 0 .000001 sec = 1597
n = 18 , F1 0 .000079 sec = 2584 , F2 0 .000001 sec = 2584
n = 19 , F1 0 .000135 sec = 4181 , F2 0 .000001 sec = 4181
n = 20 , F1 0 .000199 sec = 6765 , F2 0 .000001 sec = 6765
n = 21 , F1 0 .000334 sec = 10946 , F2 0 .000001 sec = 10946
n = 22 , F1 0 .000540 sec = 17711 , F2 0 .000001 sec = 17711
n = 23 , F1 0 .000874 sec = 28657 , F2 0 .000001 sec = 28657
n = 24 , F1 0 .001415 sec = 46368 , F2 0 .000001 sec = 46368

ECE264 Purdue University, Lecture 17 6 Yung-Hsiang Lu

n = 25 , F1 0 .002201 sec = 75025 , F2 0 .000001 sec = 75025
n = 26 , F1 0 .003608 sec = 121393 , F2 0 .000001 sec = 121393
n = 27 , F1 0 .005987 sec = 196418 , F2 0 .000001 sec = 196418
n = 28 , F1 0 .009692 sec = 317811 , F2 0 .000000 sec = 317811
n = 29 , F1 0 .015671 sec = 514229 , F2 0 .000001 sec = 514229
n = 30 , F1 0 .025064 sec = 832040 , F2 0 .000001 sec = 832040
n = 31 , F1 0 .040995 sec = 1346269 , F2 0 .000001 sec = 1346269
n = 32 , F1 0 .066309 sec = 2178309 , F2 0 .000001 sec = 2178309
n = 33 , F1 0 .107114 sec = 3524578 , F2 0 .000001 sec = 3524578
n = 34 , F1 0 .172566 sec = 5702887 , F2 0 .000001 sec = 5702887
n = 35 , F1 0 .274598 sec = 9227465 , F2 0 .000001 sec = 9227465
n = 36 , F1 0 .446309 sec = 14930352 , F2 0 .000002 sec = 14930352
n = 37 , F1 0 .716845 sec = 24157817 , F2 0 .000001 sec = 24157817
n = 38 , F1 1 .157057 sec = 39088169 , F2 0 .000001 sec = 39088169
n = 39 , F1 1 .870791 sec = 63245986 , F2 0 .000001 sec = 63245986
n = 40 , F1 3 .022568 sec = 102334155 , F2 0 .000002 sec = 102334155
n = 41 , F1 4 .886978 sec = 165580141 , F2 0 .000001 sec = 165580141
n = 42 , F1 7 .937471 sec = 267914296 , F2 0 .000001 sec = 267914296
n = 43 , F1 12 .791690 sec = 433494437 , F2 0 .000001 sec = 433494437
n = 44 , F1 20 .751278 sec = 701408733 , F2 0 .000001 sec = 701408733
n = 45 , F1 33 .568536 sec = 1134903170 , F2 0 .000002 sec = 1134903170
∗/

In this comparison, the time to compute Fibonacci2 does not change much as n in-
creases. The time is so short (microsecond), the numbers do not really mean anything.
In contrast, the execution time of Fibonacci1 grows to noticeable values, half a minute
when n is 45.

If you want to be a good programmer, you certainly want your programs to produce
results fast. If you are not careful, you canwrite a program (or a function) that is simple,
straightforward, “elegant”, and terribly slow. It is extremely important to understand
this concept.

The complexity of Fibonacci1 is ≈ 2n. The following is a sketch of the reasoning. Re-
member

f(n) = f(n − 1) + f(n − 2) = 2f(n − 2) + f(n − 3).

The problem of Fibonacci1 is that f(n − 2) is computed twice. We further expand the
formula:

f(n) = 2f(n − 2) + f(n − 3) = 3f(n − 3) + 2f(n − 4) = 5f(n − 4) + 3f(n − 5).

Fibonacci1 computes f(n − 4) five times. We can count only four time; this underes-
timates the complexity but it is simpler. Following this procedure, computing f(n) will
requires computing f(n−2k) more than 2k times. Hence, using Fibonacci1 to compute
f(n) requires calling f(1) more than 2

n

2 = (
√

2)n times. This is an underestimation so
Fibonacci1 takes at least exponential time to compute f(n).

ECE264 Purdue University, Lecture 17 7 Yung-Hsiang Lu

Another way to compute f(n) is using this formula

f(n) =
1
√

5
[(

1 +
√

5

2
)n − (

1 −
√

5

2
)n]. (4)

You can verify that f(n) = f(n − 1) + f(n − 2).

Fibonacci2’s complexity is ≈ n because it computes f(n) for each n only once. It re-
members the values so that it does not recompute.

3 From 2n to lg n

You can compute Fibonacci numbers in ≈ lg n by thinking of this problem in two ways.
First, you can compute an in lg n time by doubling the exponent each time, instead of
increasing the exponent by one each time.

a1 = a

a2 = a · a
a4 = a2 · a2

a2k = ak · ak.

(5)

Another solution is to recognize the following relation

f(2n) = f(n − 1)f(n) + f(n)2. (6)

In one step, we reduce 2n to n and n−1, namely reducing it by half. Obviously, you should
not compute f(n) twice in order to obtain f(n)2. Instead, your program should remember
f(n) so that computing f(n)2 is a single step using one multiplication. Continue this
process to reduce n by half again in another single step.

Why is this important? Why do we need to learn this in a programming class? This is
not in the textbook. Do we care about mathematics? Yes, if you want to be an excellent
engineer. This example shows that you can write code in different ways. Consider these
different ways to compute f(n), from 2n to n to lg n. If n is one thousand, the first will
take longer than the history of the universe; the third will take no more than one second.

Why were computers invented? To compute and to compute faster. As more and more
information is handled on-line (hundreds of millions of users on facebook.com, for exam-
ple), your career depends on the ability to design and write fast programs.

ECE264 Purdue University, Lecture 17 8 Yung-Hsiang Lu

