
ECE 264 Advanced C Programming

Contents

1 Deep Copy 1

2 Complexity of Selection Sort 5

3 Pointer Arithmetics 9

1 Deep Copy

The previous lecture ended when we encountered a problem:

p1 = p2;

made p1 and p2 share the same address for their names. As a result, changing p1 ’s name
also changes p2 ’s name

There are several solutions and we will explain only one called deep copy. Another solu-
tion uses reference counts and copy-on-write; this is beyond the scope of ECE 264. Instead
of using “=”, we have to provide a function to copy the objects. In this example, we also
use pointers for objects. From now on, we use pointers for objects in most cases because
of their flexibility. When we use structures in C, we often need to dynamically allocate
and release memory. Pointers are much easier to handle memory allocation and release.

/ * person.h * /
#ifndef PERSON_H
#define PERSON_H
typedef struct
{

int p_age;
char * p_name;

} Person;

Person * Person_construct(int a, char * n); / * return pointer * /

ECE264 Purdue University, Lecture 09 1 Yung-Hsiang Lu

Person * Person_copy(Person * p);
void Person_assign(Person * * p1, Person * p2);
/ * notice * * for the first object * /
void Person_destruct(Person * p);
void Person_print(Person * p);
int Person_getAge(Person * p);
char * Person_getName(Person * p);
#endif

We change the constructor to return a pointer of a Person object. The function first
creates an object and then creates the array to hold the name. There are two new func-
tions: Person assign and Person copy . The former replaces the assignment (“=”)
that caused problems earlier when only shallow copy was used. Person assign uses
deep copy. What does this mean? Instead of copying the address of the array for the name,
the function will allocate additional memory so that the source and the destination do
not share the memory address. We expect the following statement does nothing.

x = x;

Thus, we have to check whether the source and the destination are the same. If they are
the same, the function does nothing and returns immediately. Why is this necessary?
Because the next step releases the memory of the destination. If we do not check, the
destination and the source are both released.

/ * person.c * /
#include "person.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
Person * Person_construct(int a, char * n)
{

Person * p = malloc(sizeof(Person));
p -> p_age = a;
p -> p_name = malloc((strlen(n) + 1) * sizeof(char));
strcpy(p -> p_name, n);
return p;

}

Person * Person_copy(Person * p)
{

return Person_construct(p -> p_age, p -> p_name);

ECE264 Purdue University, Lecture 09 2 Yung-Hsiang Lu

}

void Person_assign(Person * * p1, Person * p2)
/ * replace = because it does shallow copy * /
/ * notice * * for the first object * /
{

if ((* p1) == p2) { return; } / * must check first * /
Person_destruct (* p1);

* p1 = Person_copy(p2);
}

void Person_destruct(Person * p)
{

free (p -> p_name);
free (p);

}

void Person_print(Person * p)
{

printf("age= %d, name= %s\n", p -> p_age, p -> p_name);
}

int Person_getAge(Person * p)
{

return p -> p_age;
}

char * Person_getName(Person * p)
{

return p -> p_name;
}

Why do we need to destroy p1? Because it holds memory for the name. Without calling
the destructor, the memory is leaked. Then, we create a new Person object by calling
Person copy . This function is called to create a new object from an existing object
and is implemented by calling Person construct . The output of main is what we
expect: changing p1 ’s name does not change p2 ’s nor p3 ’s names. Each object has its
own memory to hold the name.

Do not use the word new in your C program because it is reserved in C++. Due to the
similarity between C and C++, it is common to “migrate” C code to C++. If a C program
contains new, the C++ program will not compile.

ECE264 Purdue University, Lecture 09 3 Yung-Hsiang Lu

In main , we have to pass the address of p1 when calling Person assign because we
will change where p1 points to. When p3 is created, Person copy is called because this
is the first time p3 occupies memory. If we want to change a Person object latter, we
have to call Person assign . If we call Person copy , the memory is leaked.

/ * main.c * /
#include <stdio.h>
#include <string.h>
#include "person.h"
int main(int argc, char * argv[])
{

Person * p1 = Person_construct(19, "Tom Johnson");
Person * p2 = Person_construct(21, "Mary Smith");
Person * p3;
p3 = Person_copy(p1);
Person_print(p1);
Person_print(p2);
Person_print(p3);
Person_assign(& p1, p2); / * notice & * /
Person_print(p1);
Person_print(p2);
Person_assign(& p1, p1); / * source = destination * /
Person_print(p1);
strcpy(p1 -> p_name, "Edward");
Person_print(p1);
Person_print(p2);
Person_print(p3);
Person_destruct(p1);
Person_destruct(p2);
Person_destruct(p3);
return 0;

}

/ *
output:
age= 19, name= Tom Johnson
age= 21, name= Mary Smith
age= 19, name= Tom Johnson
age= 21, name= Mary Smith
age= 21, name= Mary Smith
age= 21, name= Mary Smith
age= 21, name= Edward

ECE264 Purdue University, Lecture 09 4 Yung-Hsiang Lu

age= 21, name= Mary Smith
age= 19, name= Tom Johnson

* /

General Rules: If the constructor allocates memory, we also need to provide the copy
and the assignment functions. The copy function is called to create a new object using
an existing object. It has only one input argument, as a pointer to an existing object. The
assignment function has two arguments, the first as the destination and the second as
the source. At the beginning of the function, it checks whether the destination and the
source are the same. If they are the same, do nothing and return. If they are different,
destroy the destination and create an object by calling the copy function. This rule can
help you prevent memory errors in larger programs, particularly when the programs
contain structures of structures.

2 Complexity of Selection Sort

How much time does it take for selection sort to order a array of n elements?

#include <stdio.h>
void swap(int * a, int * b)
{

int temp = * a;
(* a) = (* b);
(* b) = temp;

}
void printArray(int * x, int n)
{

int i;
for (i = 0; i < n; i ++)

{ printf("%8d", x[i]); }
printf("\n");

}
int main(int argc, char * argv[])
{

int x[] = {6, 7, 3, 2, 0, 9, -4, 1};
int n = sizeof(x) / sizeof(int);
printArray(x, n);
int i1, i2, mInd;
for (i1 = 0; i1 < n - 1; i1 ++)

{
mInd = i1;

ECE264 Purdue University, Lecture 09 5 Yung-Hsiang Lu

for (i2 = i1 + 1; i2 < n; i2 ++)
{

if (x[mInd] > x[i2])
{ mInd = i2; }

}
if (mInd != i1)

{
printf("\ni1 = %d, mInd = %d, x[i1] = %d, x[mInd] = %d\n",

i1, mInd, x[i1], x[mInd]);
swap(&x[i1], &x[mInd]);
printArray(x, n);

}
}

printArray(x, n);
return 0;

}

The first iteration goes through 0, 1, 2, ..., until n - 2 . The second iteration goes through
i + 1 , i + 2 , ..., until n - 1 , namely n - 1 - i1 times. Totally, the if condition is
tested

n−2
∑

i=0

(n − 1 − i) = (n − 1) · (n − 1) +
n−2
∑

i=0

(−i) = (n − 1)2
−

n−2
∑

i=0

i. (1)

How to compute
n
∑

i=1

i?

Let f(n) be
n
∑

i=1

i.

f(n) = 1 + 2 + 3 + ... + n

f(n) = n + (n − 1) + (n − 2) + ... + 1
⇒

2f(n) = (n + 1) + (n + 1) + (n + 1) + ... + (n + 1)
2f(n) = (n + 1) × n

⇒

f(n) = n(n+1)
2

(2)

(n − 1)2 −
(n−2)(n−1)

2
= (n−1)n

2
= n2

−n
2

≈
1
2
n2 ≈ n2. (3)

ECE264 Purdue University, Lecture 09 6 Yung-Hsiang Lu

When we analyze a computer program, we are often interested in the growth rate of the
execution time related to the size of the problem. If we have an array of n elements,
how long does it take? Why do we care about the growth rate? Because computers
are designed to handle large amounts of data. As references, Yahoo.com has 500 million
users; facebook.com has 150 million users; Southwest Airlines fly more than 100 million
passengers per year; eBay.com has 84 million active users. We want to design programs
whose execution times grow slowly relative to the size of the problems. This is called the
scalability of programs. Here is a basic rule you need to know

log n < n < n2 < n3 < 2n (4)

when n is sufficiently large (n > 10). The following program can show their values for n

between 1 and 20.

/ * growrate.c * /
/ * to compile and link, use

gcc growrate.c -lm because we need to link the math library

* /
#include <math.h>
#include <stdio.h>
int main(int argc, char * argv[])
{

int valN;
printf(" n exp nˆ2 nˆ3 2ˆn\n");
for (valN = 1; valN <= 20; valN ++)

{
printf("%2d %8d %8d %8d %10d\n",

valN, (int) log(valN), valN * valN,
valN * valN * valN, (int) pow(2, valN));

}
return 0;

}
/ *

n exp nˆ2 nˆ3 2ˆn
1 0 1 1 2
2 0 4 8 4
3 1 9 27 8
4 1 16 64 16
5 1 25 125 32
6 1 36 216 64
7 1 49 343 128
8 2 64 512 256

ECE264 Purdue University, Lecture 09 7 Yung-Hsiang Lu

9 2 81 729 512
10 2 100 1000 1024
11 2 121 1331 2048
12 2 144 1728 4096
13 2 169 2197 8192
14 2 196 2744 16384
15 2 225 3375 32768
16 2 256 4096 65536
17 2 289 4913 131072
18 2 324 5832 262144
19 2 361 6859 524288
20 2 400 8000 1048576

* /

This program also shows a few important concepts in C. First, we are using the math
library. Since this is not a standard C library (such as printf), we have to add -lm to
link the program with the math library. Second, we can format the output by adding a
number after %. This printf gives 2 columns for the first number, 8 columns for the
second number, and 10 columns for the last number. Third, we use type cast to convert a
floating-point number to an integer. The outputs of log and pow are floating-point num-
bers (double precision). We are interested in only the integer values. The first function
uses natural logarithm as the base. The second function uses 2 as the base for the power
function.

We are more interested in the approximation of the growth rate. If f(n) ≫ g(n) when
n is large, we ignore g(n) in f(n) + g(n) and use f(n) only. We also ignore the constant
coefficient 1

2
. Hence,

the complexity of selection sort is n2.

Exercise: Suppose X, Y, and Z are three square matrices:

X =









x1,1 x1,2 ... x1,n

x2,1 x2,2 ... x2,n

...

xn,1 xn,2 ... xn,n









n×n.

Y =









y1,1 y1,2 ... y1,n

y2,1 y2,2 ... y2,n

...

yn,1 yn,2 ... yn,n









n×n.

Z =









z1,1 z1,2 ... z1,n

z2,1 z2,2 ... z2,n

...

zn,1 zn,2 ... zn,n









n×n.

(5)

ECE264 Purdue University, Lecture 09 8 Yung-Hsiang Lu

Matrix multiplication Z = XY is defined as

zi,j =
n

∑

k=1

xi,k × yk,j, 1 ≤ i, j ≤ n. (6)

Write C code to implement matrix multiplication. What is the complexity of the code?

⊳

3 Pointer Arithmetics

C provides “pointer arithmetics”. Suppose ptr is a pointer:

int array[100];
int * ptr = array;

The increment operation ptr ++; makes ptr point to next element.

#include <stdio.h>
void printInt(int * intArray, int numElem)
{

int index;
int * intPtr;
intPtr = intArray;
for (index = 0; index < numElem; index ++)

{
printf("%d %d\n", * intPtr, intArray[index]);
/ * notice * before intPtr * /
/ * * intPtr same as intArray[index] * /
intPtr ++;

}
printf("\n");

}
void printDouble(double * doubleArray, int numElem)
{

int index;
double * doublePtr;
doublePtr = doubleArray;
for (index = 0; index < numElem; index ++)

ECE264 Purdue University, Lecture 09 9 Yung-Hsiang Lu

{
printf("%.2f %.2f\n", * doublePtr, doubleArray[index]);
/ * .2f means two digits after the decimal point * /
doublePtr ++;

}
printf("\n");

}
int main(int argc, char * argv[])
{

int intArray[] = {9, 7, -11, 5, 6, 8};
double doubleArray[] = {9.8, 3.4, -11.893, 6.1, 7.5, 0.24};
printInt(intArray, sizeof(intArray)/ sizeof(int));
printDouble(doubleArray, sizeof(doubleArray)/ sizeof(double));
return 0;

}
/ *

output:
9 9
7 7
-11 -11
5 5
6 6
8 8

9.80 9.80
3.40 3.40
-11.89 -11.89
6.10 6.10
7.50 7.50
0.24 0.24

* /

C knows the distance between elements (from sizeof). We can use this property to write
the printInt and the printDouble function. Hence, intPtr ++; and doublePtr
++; mean the next elements in the two arrays.

ECE264 Purdue University, Lecture 09 10 Yung-Hsiang Lu

