ECE 264 Advanced C Programming

Contents
1 File Operations 1
2 Array of Unknown Size: Dynamic Memory Allocation 7

1 File Operations

Most of our programs, up to this point, do the same things over and over again. The
sizes of the arrays are fixed. The values of the elements are fixed. These programs are not
particularly exciting. To make these programs more useful, we must be able to handle
different sizes of arrays, with different element values.

We can use scanf to input an integer value by a user. However, this is useful if the
program needs only several numbers. If the program needs many numbers, any user will
soon run out of patience. Moreover, most data are stored in computers already. It makes
no sense to ask anyone to enter the data by hand again. What we need is the ability to
read and write data using files. The following program writes six integers to a file and
then reads the values back from the same file.

[+ filel.c */
#i ncl ude <stdio. h>
void witeFile(char = fileNane, int * array, int nunkl em

{
FILE » fptr = fopen(fileNanme, "w');
int cnt;
if (fptr == NULL)
{

printf("cannot wite file %\n", fileNane);
return;

for (cnt = 0; cnt < nunElem cnt ++)
fprintf(fptr, "%\ n", array[cnt]);

}
fclose(fptr);

ECE264 Purdue University, Lecture 06 1 Yung-Hsiang Lu

}

voi d readFile(char * fil eNane)

{
FILE » fptr = fopen(fileNanme, "r");
int val;
if (fptr == NULL)
{
printf("cannot read file %\n", fileNane);
return;
}
while (! feof(fptr))
{
fscanf(fptr, "%\ n", & val);
printf("%l\n", val);
}
fclose(fptr);
}
int main(int argc, char * argv[])
{
int array[] = {2, 6, 4, 2, 0, 9};
if (argc < 2)
{
printf("need file nane\n");
return -1;
}
witeFile(argv[1l], array, sizeof(array) / sizeof(int));
readFil e(argv[1]);
return O,
}

C provides a type called FI LE. We use f open to open a file; the first argument is the file’s
name and the second argument is the mode. The following modes are supported

“r” open to read
“w” open to write
“a” open to append

“rb” open to read in binary mode
“wb” open to write in binary mode
“ab” open to append in binary mode
“r+” both reading and writing

4

ECE264 Purdue University, Lecture 06 2 Yung-Hsiang Lu

If f open fails, it returns NULL (zero). This call may fail for many reasons, such as (1) the
tile does not exist or (2) the file exits but the user has not right to read or to write. You
should always check the returned value of f open before doing anything related to the
file. If you do not check, the program may crash because it tries to read a file that does
not exist. We can use f pri nt f to print values to a file. The first argument is a pointer to a
file, obtained by calling f open earlier. After we finish printing to the file, call f cl ose to
flush the output and close the file. In most systems, writing to a file does not occur to the
physical storage (such as a disk) immediately. Instead, the output is stored in a buffer (i.e.
memory). This can significantly improve performance because the next write may occur
soon. Writing immediately to a disk can slow down a program by thousands of times.
Calling f cl ose ensures that all data in the buffer are flushed to the disk so that the data
are not lost. You should always call f c| ose when the file is no longer needed. Reading
a file is symmetric to writing a file. When we write, we use f pri nt f . When we read, we
use f scanf with the first argument as the file pointer. The function f eof (end-of-file)
returns one if we have reached the end of the file.

In addition to f pri nt f and f scanf, there are many other functions to write to or to read
from files. Function f get s reads a string of n (second argument) characters. (Check the
manual “man fgets”.) We can write or read one character each time by using put ¢ and
get c. The following program count the occurrence of character e’ in a file.

/* counte.c

count the occurrence of
#i ncl ude <stdi o. h>
int main(int argc, char * argv[])

{

e */

FILE » fptr;
int ch;
int counter = O;
if (argc < 2)
{
printf("need file nanme\n");
return -1;
}
fptr = fopen(argv[1l], "r");
if (fptr == NULL)

{
printf("open file fail\n");
return -1;
}
while ((ch = getc(fptr)) !'= ECF)
{
if (ch =="¢e")

{ counter ++; }

ECE264 Purdue University, Lecture 06 3 Yung-Hsiang Lu

}

}

fclose (fptr);

printf("e appears % tines\n", counter);
return O,

The following program generates two vectors and writes the elements into a file. The
file’s name is one input argument and the size of the vector is another input argument.

/* genvector.c =*/

/* generate two vectors of the sane size =/

#i ncl ude <stdlib. h>

#i ncl ude <stdi o. h>

#i ncl ude <sys/tine. h>

voi d generate2Vector(char * fileNane, int nuntEl em

{

}

FILE » fptr = fopen(fileNanme, "w');
int cnt;
if (fptr == NULL)
{
printf("cannot wite file %\n", fileNane);
return;
}
fprintf(fptr, "%\ n", nuntElen);
for (cnt = 0; cnt < nunElem cnt ++)
{
fprintf(fptr, "% %\ n", rand() % 1000, rand() % 1000);

}
fclose(fptr);

int main(int argc, char * argv[])

{

struct timeval currTine;
getti neof day(&currTime, NULL);
srand(currTinme.tv_usec);

if (argc < 3)
{
printf("file name and nunber of elenments\n");
return -1;

}
generate2Vector(argv[1l], (int)strtol (argv[2], (char **)NULL, 10));

ECE264 Purdue University, Lecture 06 4 Yung-Hsiang Lu

return O;

}
| *

out put (one instance)

17

299
553
115
112
548
922
342
162
177
257
634
969
213
903
472
619
193

*/

The next program reads the elements, add each pair, and print the sums.

535
941
618
114
410
390
552
140
186
960
62

788
433
883
732
252
772

[/~ addvector.c =*/

[+ add two vectors =/

#i ncl ude <stdlib. h>

#i ncl ude <stdi o. h>

voi d add2Vect or(char = fil eNane)

{

FILE » fptr = fopen(fileName, "r");

i nt
i nt
i nt
i nt
i nt

nuntl em
val 1;

val 2;

suni

elentnt = 0O;

if (fptr == NULL)

{

}

printf("cannot read file %\n",
return;

ECE264 Purdue University, Lecture 06 5

fileNanme);

Yung-Hsiang Lu

fscanf (fptr, "%\ n", & nuntlem;
printf("% el ements\n", nuntl en);
while ((elemCnt < nunElenm) && (! feof (fptr)))
{
fscanf(fptr, "% %\ n", & vall, & val2);
sum = val 1 + val 2;
printf("%l + % = %\n", vall, val 2, sum;
el enCnt ++;
}
fclose(fptr);
}

int main(int argc, char * argv[])
{ if (argc < 2)
{ printf("need file nane and\n");
return -1;
}
add2Vector (argv[1]);
return O;
}
| *
out put (one instance)
17 el enents

299 + 535 = 834
553 + 941 = 1494
115 + 618 = 733
112 + 114 = 226
548 + 410 = 958
922 + 390 = 1312
342 + 552 = 894
162 + 140 = 302

177 + 186 = 363
257 + 960 = 1217
634 + 62 = 696

969 + 788 = 1757
213 + 433 = 646
903 + 883 = 1786
472 + 732 = 1204
619 + 252 = 871
193 + 772 = 965

ECE264 Purdue University, Lecture 06 6

Yung-Hsiang Lu

*/

2 Array of Unknown Size: Dynamic Memory Allocation

The previous program can handle different sizes of vectors. This is a great improvement.
However, sometimes we want to keep the elements for later use. For example, we may want
to sort the elements. It will be very helpful if we can store the elements in arrays, since we
already know how to sort elements in arrays. We are now ready to handle arrays whose
sizes are not known when the program is written. The sizes are known when the program
starts running. We are going to use mal | oc to allocate memory for the arrays.

[+ sortvector.c =/
[+ read two vectors,
sort their elenments together =/
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

void swap(int *p, int *q)

{.
i nt t np;
trrp:*p;
*p:*q;
*q = tnp;
}
void sortArray(int a[], int n)
{
int i, j;
for (i =0; i <n - 1; ++i)
/* same as i ++ x/
{
for (j =i +1; j <n; j++)
{
if{(a[i] > a[j])
}vaap(&a[i], &a[j]);
}
}
}

ECE264 Purdue University, Lecture 06 7 Yung-Hsiang Lu

int main(int argc, char * argv[])
{
int = vecptr;
int elenCnt = O;
i nt nurEl em
int val 1,
int val 2;
FILE » fptr;
if (argc < 2)
{
printf("need file nane and\n");
return -1;
}
fptr = fopen(argv[1l], "r");
if (fptr == NULL)
{
printf("cannot read file %\n", argv[1l]);
return -1;
}
fscanf(fptr, "%\ n", & nuntl en);
printf("% el ements\n", nuntl en);
vecptr = malloc(2 * nunElem* sizeof(int));
if (vecptr == NULL)

{
printf("menory allocation fail\n");
return -1;
}
while ((elenCnt < nunElem) && (! feof (fptr)))
{

fscanf(fptr, "% %\n", & vall, & val2);
vecptr[2 * elenCnt] = val 1,
vecptr[2 * elenCnt + 1] = val 2;
el enCnt ++;
}
fclose(fptr);
sort Array(vecptr, 2 * nunkl em;
for (elenCnt = 0; elenCnt < 2 * nunmElem elenCnt ++)
{
printf("%l ", vecptr[elenCnt]);
}
printf("\n");
free(vecptr);

ECE264 Purdue University, Lecture 06 8 Yung-Hsiang Lu

return O;

}

| *
17 el enents
62 112 114 115 140 162 177 186 193 213 252 257 299 342 390 410 433 472
535 548 552 553 618 619 634 732 772 788 883 903 922 941 960 969

* [

C has two functions to allocate memory: mal | oc and cal | oc. The former takes one
argument and the latter takes two.

mal l oc(n * sizeof(int));
call oc(n, sizeof(int));

The former is more commonly used because cal | oc initializes the allocated memory to
zero. In most cases, this is simply wasting time. In our program, after the memory is
allocated, the elements are assigned using the values from the file. It is unnecessary to
initialize the memory to zero.

When you call nal | oc, you should always check whether the allocation is successful.
If it fails, take the appropriate steps to handle it. If you do not check whether the allocation
is successful, the program will crash when it tries to use the memory.

After allocating memory, we can use it as the arrays that we have seen before. When this
space is no longer needed, call f r ee to release the space. A typical structure of using
dynamically allocated memory is

int » intPtr;

intPtr = mall oc(nunEl em * sizeof(int));
. [+ use the array =x/
free(intPtr);

Releasing memory isn’t really a great deal in this very simple program. When your pro-
grams become more complex, memory management can easily become a major source
of mistakes. Very often, we reuse a pointer by assigning it to point to somewhere else. If
we do not release the memory before the assignment, that piece of memory can no longer
be reached. This is called memory leak.

ECE264 Purdue University, Lecture 06 9 Yung-Hsiang Lu

int »~ intPtr;

intPtr = mall oc(nunEl em * sizeof(int));
/* no free =/
intPtr = mall oc(nunmEl em * sizeof(int));
/+ menory | eak, the previous nenory space is |ost x/

For the operating system, the memory still belongs to the program. Memory leak is a
silent killer of programs. The total amount of available memory space is finite. If a pro-
gram leaks memory, the available memory gradually shrinks. Eventually, the operating
system will refuse the allocate more memory (mal | oc returns 0) and the program will
likely crash. Modern computers usually have large (virtual) memory space. It can take
weeks for a program to run out of memory. A program may execute without any problem
for weeks and then suddenly crash.

Fortunately, there are tools checking memory leak. In Linux, val gri nd can check mem-
ory leak. Suppose sort vect or is the name of the program, we can check whether there
is memory leak by using this command

val grind --1eak-check=yes ./sortvector data.in
If there is no problem, the output is something like this

==21608== ERROR SUWARY: O errors fromO contexts (suppressed: 12 from 1)
==21608== malloc/free: in use at exit: 0 bytes in O bl ocks.

==21608== mal l oc/free: 2 allocs, 2 frees, 488 bytes all ocated.

==21608== For counts of detected errors, rerun with: -v

==21608== All heap bl ocks were freed -- no | eaks are possi bl e.

If we remove f ree(vecptr) ;, the report is

==21671== LEAK SUMVARY:

==21671== definitely lost: 136 bytes in 1 bl ocks.

==21671== possibly lost: O bytes in O bl ocks.

==21671== still reachable: 0 bytes in O bl ocks.

==21671== suppressed: 0 bytes in 0 bl ocks.

==21671== Reachabl e bl ocks (those to which a pointer was found) are not sho
==21671== To see them rerun with: --showreachabl exyes

ECE264 Purdue University, Lecture 06 10 Yung-Hsiang Lu

Not surprisingly, we leak 17 elements of double, 8 x 17 = 136 bytes. You should always
check whether your programs leaks memory. Memory leak is particularly harmful in
embedded systems (maybe as few as only several KB) because they have less memory
than computers (typically have several GB).

Some languages, such as Java, have built-in garbage collection. After a piece of memory is
allocated and later becomes unreachable (called garbage), the languages will reclaim that
piece of memory. Programmers do not have to explicitly release memory. C does not
collect garbage because garbage collection can (1) slow down a program and (2) make a
program’s execution time less predictable.

ECE264 Purdue University, Lecture 06 11 Yung-Hsiang Lu

