
ECE 264 Advanced C Programming

Contents

1 Pointer, Address, and Value 1

2 Selection Sort 3

3 String 5

4 Modus Tollens 7

1 Pointer, Address, and Value

Two essential components in a computer are the processor and the memory. The memory
is organized into a list. Each element in the list has an address and a value. We, as pro-
grammers, can assign the values but we have no control of the addresses. The addresses
are assigned by the operating systems (such as Windows or Linux). The following is one
example of

int a = 5;
char b = ’e’;

address value comment
0XBF800D40 5 /* a */
0XBF800D44 e /* b, ASCII 101 */

here 0X means hexadecimal. When we use a, the compiler knows that we are using the
address of 0XBF800D40. When we write

a = 7;

the compiler modifies the value at the address of 0XBF800D40. We can obtain the address
of a by adding an ampersand & in front of a:

ECE264 Purdue University, Lecture 05 1 Yung-Hsiang Lu



& a

returns 0XBF800D40. C uses pass by valuewhen calling a function.

int add(int a, int b)
{

return (a + b);
}

The arguments a and b take the values. When calling the function

int x = add(7, 9);

a has value 7 and b has value 9. When calling the function using variables

int s = 11;
int t = 32;
int x = add(s, t);

a has value 11 and b has value 32. The function add has no information about the address
of s or t. Hence, it is not possible to change s or t inside the function and make the
change visible to the caller. If we want to make the change visible to the caller, we have
to use pointers.

void swap(int * p, int * q)
{

...
}
int x = 5;
int y = 11;
swap(& x, & y);
/* x = 11 and y = 5 now */

Calling swap using the addresses of x and y allows swap to directly modify the values
stored at the addresses. Therefore, the change is visible after the function returns.

ECE264 Purdue University, Lecture 05 2 Yung-Hsiang Lu



2 Selection Sort

With the swap function and the addresses of array elements, we can sort the elements of
an array. Sorting is one of the most important steps in many programs. Sorting means
ordering data based on a particular part (also called key) in each item. For example, wemay
sort the list of students based on their last names. Another example is sorting airplane
tickets by prices or arrival time. You can sort emails by the arrival dates. Selection sort is a
simple way to sort elements.

#include <stdio.h>
void swap(int * a, int * b)
{

int temp = *a;
(*a) = (*b);
(*b) = temp;

}
void printArray(int * x, int n)
{

int i;
for (i = 0; i < n; i ++)

{ printf("%8d", x[i]); }
printf("\n");

}
int main(int argc, char * argv[])
{

int x[] = {6, 7, 3, 2, 0, 9, -4, 1};
int n = sizeof(x) / sizeof(int);
printArray(x, n);
int i1, i2, mInd;
for (i1 = 0; i1 < n - 1; i1 ++)

{
mInd = i1;
for (i2 = i1 + 1; i2 < n; i2 ++)

{
if (x[mInd] > x[i2])

{ mInd = i2; }
}

if (mInd != i1)
{

printf("\ni1 = %d, mInd = %d, x[i1] = %d, x[mInd] = %d\n",
i1, mInd, x[i1], x[mInd]);

swap(&x[i1], &x[mInd]);
printArray(x, n);

ECE264 Purdue University, Lecture 05 3 Yung-Hsiang Lu



}
}

printArray(x, n);
return 0;

}

If you look carefully, in each iteration of the outer loop (i1), the i
th smallest value if

moved to the i
th element. After the first (i1 = 0) iteration, the smallest value (-4) is the

first element. After the second (i1 = 1) iteration, the second smallest value (0) is the
second element. It is called “selection” sort because the smallest value is selected moving
to the correction location. It contains two levels of iterations. The first goes from zero to
the number of elements -1. The second goes from i1 + 1 to the last element.

How shouldwe change the program if wewant the result in the descending order, instead
of the ascending order? It is simple. We just change this line

if (a[i] > a[j])

to

if (a[i] < a[j])

6 7 3 2 0 9 -4 1

i1 = 0, mInd = 6, x[i1] = 6, x[mInd] = -4
-4 7 3 2 0 9 6 1

i1 = 1, mInd = 4, x[i1] = 7, x[mInd] = 0
-4 0 3 2 7 9 6 1

i1 = 2, mInd = 7, x[i1] = 3, x[mInd] = 1
-4 0 1 2 7 9 6 3

i1 = 4, mInd = 7, x[i1] = 7, x[mInd] = 3
-4 0 1 2 3 9 6 7

i1 = 5, mInd = 6, x[i1] = 9, x[mInd] = 6
-4 0 1 2 3 6 9 7

i1 = 6, mInd = 7, x[i1] = 9, x[mInd] = 7
-4 0 1 2 3 6 7 9
-4 0 1 2 3 6 7 9

ECE264 Purdue University, Lecture 05 4 Yung-Hsiang Lu



3 String

What is a string? You can think of a string as a word or a sentence enclosed by double
quotations. “Hello” is a string. “Good Morning” is another string. “We are studying C
programming.” is yet another string. A string can also include symbols, for example,

“If you add x and y (x + y), you will get z (x + y = z).”

“A string may include symbols, such as $#@%&̂—.”

In C, a string is nothing but an array of characters. Each element is char. The following
is an example to create some strings.

/* string1.c */
#include <stdio.h>
int main(int argc, char * argv[])
{

char str1[] = "Hello ECE264 Students";
char * str2 = "This is another string.";
char str3[] = {’a’, ’b’, ’x’, ’y’, ’\0’};
printf("str1 = %s\n", str1);
printf("str2 = %s\n", str2);
printf("str3 = %s\n", str3);
return 0;

}
/*

output:
str1 = Hello ECE264 Students
str2 = This is another string.
str3 = abxy

*/

In C, printing a string uses %s. There are different ways to create strings. The first creates
an array of char. The second uses a pointer to a constant array of char because gcc will
create this array and assign the address to the pointer str2. The third creates another
string. What is ’\0’?

In C, each string must end with the special character ’\0’. If you want to create a string
“ECE264”, you must have an array of 7 characters. The additional element stores the
ending character ’\0’. It is a common mistake forgetting to add the ending character in
a string. C library has some functions to manipulate strings.

/* string2.c */
#include <string.h>

ECE264 Purdue University, Lecture 05 5 Yung-Hsiang Lu



#include <stdio.h>
int main(int argc, char * argv[])
{

char str1[] = "This is a string.";
char * str2 = "Hello ECE264 Students";
char str3[] = {’a’, ’b’, ’x’, ’y’, ’\0’};
char str4[] = "ECE264";
char str5[80];
printf("strlen(str1) = %d\n", strlen(str1));
printf("strlen(str4) = %d\n", strlen(str4));
printf("strcmp(str1, str2) = %d\n", strcmp(str1, str2));
printf("strcmp(str1, str3) = %d\n", strcmp(str1, str3));
printf("strcmp(str2, str3) = %d\n", strcmp(str2, str3));
printf("strchr(str2, ’4’) = %s\n", strchr(str2, ’4’));
strcpy(str5, str2);
printf("strcpy(str5, str2) = %s\n", str5);
strcat(str5, str3);
printf("strcat(str5, str3) = %s\n", str5);
return 0;

}
/*

output:
strlen(str1) = 17
strlen(str4) = 6
strcmp(str1, str2) = 1
strcmp(str1, str3) = -1
strcmp(str2, str3) = -1
strchr(str2, ’4’) = 4 Students
strcpy(str5, str2) = Hello ECE264 Students
strcat(str5, str3) = Hello ECE264 Studentsabxy

*/

• strlen: returns the length of the string,without counting the ending ’\0’.

• strcmp: compares two strings based on the dictionary order. If the first string would
appear before the second in a dictionary, the value is -1. If the two strings are the
same, the value is zero. If the first would appear latter, the value is 1. The ASCII
(American Standard Code for Information Interchange) value of ’T’ is 84 and the
value of ’a’ is 97. Thus, the first string is smaller than the third one. In ASCII, A - Z
are 65 - 90; a - z are 97 - 122.

You can use strncmp with the third argument; this argument specifies the max-
imum number of characters to compare. If a string is shorter than this number,

ECE264 Purdue University, Lecture 05 6 Yung-Hsiang Lu



strncmp compares up to only the ending character ’\0’.

• strchr returns the address of the first appearance of the character in the second
argument. It returns NULL if this character does not appear in the string. You may
find this function useful for PA1.

• strcpy copies the second string to the first string. This function does not check
whether the destination (first argument) has enough space. If the destination does
not have enough space, the result is undefined (i.e. the program may crash).

One solution is to copy as many characters as the space in the destination by using
strncpy. This function has the third argument specifying the number of characters
to copy. Suppose buf is an array of characters. The following code copies as many
as allowed and explicitly adds the ending character to terminate the string.

strncpy(buf, input, sizeof(buf) - 1);
buf[sizeof(buf) - 1] = ’\0’;

You must be very careful when you handle strings. Always terminates strings by
adding ’\0’ when you are not sure.

• strcat concatenates the second string to the first string. C does not check whether
the first string has enough space. You can use strncat to control the number of
characters added to the destination (first) string.

One common security problem related to strings is called buffer overflow attack. This type
attack gives ridiculously long inputs to crash a program ormake it misbehave. TheMorris
worm in 1988 was one of the first large-scale attacks through the Internet using buffer
overflow. Even though the worm did not intend to cause damage (such as erasing files),
the worm grew so fast and shut down the Internet. Since then, numerous attackers have
tried to use buffer overflow and in many cases succeeded because programmers forget to
restrict the lengths of strings.

4 Modus Tollens

Consider this code segment

if (x == 0)
{

y = 0;
}

ECE264 Purdue University, Lecture 05 7 Yung-Hsiang Lu



After running this code, what can we say about x if we know y is not zero? We know that
xmust not be zero. This concept is called modus tollens (Latin).

What can we say about x if y is indeed zero? We do not know whether x is zero or not
because ymay be zero originally. Consider the following case:

int x = 3;
int y = 0;
if (x == 0)
{

y = 0;
}

After this condition, y is zero even though x is not zero. This is a common mistake. If y
is zero, you cannot say anything about x. If y is not zero, x must not be zero. When you
debug a program and you know that y is zero, you cannot assume that x is also zero.

When x is not zero, we do not know whether y is zero or not.

int x = 3;
int y; /* can be zero or not zero */
if (x == 0)
{

y = 0;
}
/* y may or may not be zero. We don’t know. */

One way to understand this is the following: If it is raining, the street must be wet. If
the street is dry, it must not be raining. If the street is wet, it may or may not be raining.
The street can be wet for many reasons. It could be raining an hour ago. Maybe a water
pipe bursts. Maybe a river overflows (heavy rain from upper stream or a dam is broken).
Maybe it snowed yesterday and the snow is melting now. We do not know whether it is
raining or not if the street is wet. We do know that it is not raining if the street is dry.
Also, if it is not raining, we do not know whether the street is dry or wet.

ECE264 Purdue University, Lecture 05 8 Yung-Hsiang Lu


