
ECE 264 Advanced C Programming

Contents

1 Boolean Logic 2

2 Control Flow 3

2.1 if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 while . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 switch-case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Common Mistakes in Flow Control 8

3.1 Brackets and if-else Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 if-else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 default in switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Binary Numbers 11

5 Bitwise Operations 13

5.1 And / Or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.3 OR and XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Operator Precedence 15

ECE264 Purdue University, Lecture 03 1 Yung-Hsiang Lu



1 Boolean Logic

C uses Boolean logic to control programs’ flow. The following are commonly used logic
expressions

• a > 0 : true if a is larger than zero

• a && b: true if both a is true and b is true

• a || b : true if a is true or b is true, or both are true

• a == b : true if a and b have the same value. Be careful when you use this when a or
b (or both) is a floating-point number. Due to limited precision, two floating-point
numbers may be slightly different.

/ * precision.c * /
double val = 1e-7;
int cnt;
for (cnt = 0; cnt < 10000000; cnt ++)
{

val += 1e-7;
}
printf("%f %e %d\n", val, val - 1, (val == 1.0));

The output is

1.000000 9.975017e-08 0

showing that val is not exactly 1.

• a <= b: true if a is smaller than or equal to b

• ! a : true if a is false

You can use a combination of different conditions. For example

if ((a > 0) && (b < c))

is true if a is greater than 0 and b is smaller than c .

When you have a complex condition, remember to use parentheses for clarity. If the
expression is too complex, break it into several conditions. Writing a clear program can
help you discover mistakes more easily.

ECE264 Purdue University, Lecture 03 2 Yung-Hsiang Lu



Minimal evaluation (also called short-circuit evaluation):

If a is true in (a || b) , b is not evaluated.

If a is false in (a && b) , b is not evaluated.

Therefore, the order is not symmetric. For example

if ((index < size) && (array[index] == 0))

is different from

if ((array[index] == 0) && (index < size))

when index exceeds size .

2 Control Flow

2.1 if

If a computer program can do only one thing, the program isn’t particularly useful. Imag-
ine that you go to an on-line store and the store sells only one item. You cannot choose
anything else. A program is more useful if it can make some decisions; for example, you
decide to buy a book on C programming not a book on Java programming and you want
the book to arrive sooner (and pay more for shipping).

C provides several ways to control the execution of a program. All of them require deci-
sions based on true-false logic:

if (something is true)
{

do something
}
else / * this part is optional * /
{

do something else
}

ECE264 Purdue University, Lecture 03 3 Yung-Hsiang Lu



This “something” can be jumping to another location of the program and executing the
code there. We have seen several examples using C’s control

/ * ifargc.c * /
int main(int argc, char * argv[])
{

int val1;
int val2;
if (argc < 3)

{
fprintf(stderr, "need two numbers\n");
return -1;

}
val1 = (int)strtol(argv[1], (char ** )NULL, 10);
val2 = (int)strtol(argv[2], (char ** )NULL, 10);
printf("%d + %d = %d\n", val1, val2, add(val1, val2));
return 0;

}

This uses an if condition. If the value of argc is smaller than 3, the program prints an
error message and return -1. Otherwise, the program continues to assign the values to
val1 and val2 .

2.2 for

Another example:

/ * foragrc.c * /
for (cnt = 0; cnt < argc; cnt ++)
{

printf("%s\n", argv[cnt]);
}

This for block is equivalent to the following

/ * goto.c * /
cnt = 0;
repeat_label:
if (! (cnt < argc))
{

goto done_label;
}

ECE264 Purdue University, Lecture 03 4 Yung-Hsiang Lu



printf("%s\n", argv[cnt]);
cnt ++;
goto repeat_label;
done_label:

In general, you should avoid goto because too many goto’s can make the program’s flow
hard to analyze.

/ * for3.c * /
int sum;
int cnt;
sum = 0;
for (cnt = 0; cnt < vecSize; cnt ++)
{

sum += vec[cnt];
}

The compiler does not care about the format (space, tab...) but a program can be harder
to read. Many text editors will indent your C programs, for example emacs and eclipse.
In eclipse, click the right mouse button, select Source and Format , or press Shift -
Control -F. Proper indentation will reduce the chance of mistakes.

/ * badindent.c * /
int sum; int cnt;
sum = 0; for (cnt = 0; cnt <

vecSize;
cnt ++) {

sum +=
vec[cnt];

}

2.3 while

There is one important restriction of using for . We have to know howmany iterations to
execute in advance. Suppose a program needs a positive number from a user

/ * whilescan.c * /
do
{

printf("enter a positive number: ");
scanf("%d", & cnt);

} while (cnt <= 0);
printf("Correct! %d is positive.\n", cnt);

ECE264 Purdue University, Lecture 03 5 Yung-Hsiang Lu



This will keep asking the user until the user enters a positive number. The following is an
example of execution:

enter a positive number: -9
enter a positive number: -7
enter a positive number: 0
enter a positive number: 1
That’s right; 1 is a positive number.

In C,

do / * some code * / while(condition);

will execute at least once because the condition is checked after the code. We can also
move the while condition to that top. In that case, the code may not execute at all. The
following example is equivalent to for :

/ * whilefor.c * /

int cnt = 0;
while (cnt < vecSize)
{

printf("%d\n", vec[cnt]);
cnt ++;

}

/ * same as * /
for (cnt = 0; cnt < vecSize; cnt ++)
{

printf("%d\n", vec[cnt]);
}

This example shows that while can implement for .

2.4 switch-case

Sometimes, you want to distinguish several cases. For example, a computer game has to
check whether a user presses up (u), down (d), left (l), and right (r) keys. This can be done
by using several if ’s.

ECE264 Purdue University, Lecture 03 6 Yung-Hsiang Lu



/ * multiif.c * /
if (key == ’u’) {

/ * move up * /
}
else {if (key == ’d’)

{ / * move down * /} else
{

if (key == ’l’)
{

/ * move left * /
} else {if (key == ’r’) { / * move right * /
}
else

{
/ * invalid, error * /

}
}

}
}

There is a better way to handle this situation:

/ * switch.c * /
switch (key)
{

case ’u’:
/ * move up * /
break;

case ’d’:
/ * move down * /
break;

case ’l’:
/ * move left * /
break;

case ’r’:
/ * move right * /
break;

default:
/ * invalid, error * /

}

Using switch makes the code easier to read. It is necessary to put break before the next
case; otherwise, the code in the next case will also be executed. In the next example,
pressing ’U’ and ’u’ executes the same code.

ECE264 Purdue University, Lecture 03 7 Yung-Hsiang Lu



/ * switch2.c * /
switch (key)
{

case ’u’: / * no break * /
case ’U’:

/ * move up * /
break;

case ’d’:
case ’D’:

/ * move down * /
break;

case ’l’:
/ * move left * /
break;

case ’r’:
/ * move right * /
break;

default:
/ * invalid, error message * /

}

Forgetting to add break in correct locations is a common mistake.

3 Common Mistakes in Flow Control

3.1 Brackets and if-else Pairs

Flow control is critical in most programs. Therefore, it is very important to write the
control correctly. The following are some common mistakes and how to avoid them. In
C, the following two pieces of code are equivalent

if (a > 0)
{

b = -1;
}

and

ECE264 Purdue University, Lecture 03 8 Yung-Hsiang Lu



if (a > 0)
b = -1;

If there is only one statement controlled by if , it is unnecessary to use brackets. However,
the first (using brackets) is better because it prevents you from making the following
common mistake. If you add another statement later, without the bracket, you may add
the statement directly and the new statement is no longer controlled by the condition.

if (a > 0)
b = -1;
c = -2;

is equivalent to

if (a > 0)
{

b = -1;
}
c = -2; / * not controlled by a’s value * /

and is different from

if (a > 0)
{

b = -1;
c = -2; / * controlled by a’s value * /

}

Adding the brackets can reduce the chance of mistakes.

3.2 if-else

In C, else corresponds to the closest if .

What is the value of z after executing this code?

ECE264 Purdue University, Lecture 03 9 Yung-Hsiang Lu



/ * ifelse1.c * /
int x = 1;
int y = 2;
int z = 3;
if (x > 10)

if (y > 4)
z = -1;

else
z = -2;

Is z 3, -1, or -2? Which of the following two corresponds to the code above?

/ * ifelse2.c * /
if (x > 10)
{

/ * nothing between this bracket * /
if (y > 4)

{
z = -1;

}
else

{
z = -2;

}
/ * and this bracket will be executed * /

}
/ * z unchanged since x > 10 is false * /

or

/ * ifelse3.c * /
if (x > 10)
{

if (y > 4)
{

z = -1;
}

}
else
{

z = -2; / * z is changed to -2 because x < 10 * /
}

ECE264 Purdue University, Lecture 03 10 Yung-Hsiang Lu



The answer is z = 3 (unchanged) because the else corresponds to the closest (second) if .
This is another reason you should add brackets to ensure that the code is exactly what
you want. You should indent the code because proper indentation helps you visually
find the mistakes. This is very easy since many tools can do it for you, including emacs,
eclipse, or a shell program called indent.

3.3 default in switch

You should always add the default condition at the bottom of a switch block. You
may think that the cases have covered all possible scenarios. However, it is common
that you miss one case. Adding default and printing an error message can help you
discover the mistake early.

4 Binary Numbers

We are used to decimal numbers (base = 10) but computers use binary numbers (base = 2).
A decimal number may have 10 different digits: 0, 1, 2, 3, ..., 9. A binary number can have
only 0 or 1. The following table shows how to convert some numbers

decimal binary
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

What should we for converting any decimal number to the corresponding binary number,
and vice versa? Suppose bnbn−1...b1b0 is a binary number and bi is the (i + 1)th digit from
the right end. The leftmost bit bn is called the most significant bit (MSB) and the rightmost
bit b0 is called the least significant bit (LSB). The corresponding decimal number is b0 +
2(b1 + 2(b2 + 2(b3... + bn) = bo + 2b1 + 4b2 + 8b3... + 2n

bn

n∑

i=0

2i
bi. (1)

ECE264 Purdue University, Lecture 03 11 Yung-Hsiang Lu



One important property of binary numbers (or any number using any base) is

n−1∑

i=0

2i
bi < 2n

. (2)

To convert a decimal number d > 0 into a binary number, we first find n such that 2n−1
<

d ≤ 2n. This makes bn = 1. Then, we find the binary number for d − 2n. The procedure
continues until we reach zero.

How do we add two binary numbers? It is the same as adding two decimal numbers,
except carries occur for 2, not 10.

0 1 1 0 1 13
0 0 1 1 1 7
1 0 1 0 0 20

How do we handle subtractions? We first complement each bit, i.e. change 1 to 0 and 0 to
1. This new number is called one’s complement. Then, we add 1 to the number and create
two’s complement. For example, -7 is represented as

original 0 0 1 1 1
one’s complement 1 1 0 0 0
two’s complement 1 1 0 0 1

Binary subtraction is performed by adding the two’s complement and ignore the carry (if
occurs).

0 1 1 0 1 13
1 1 0 0 1 -7
0 0 1 1 0 6

Many applications require setting and testing only some bits, not the whole integer. For
example, there are four LEDs and each can be on (1) or off (0). To control these LEDs, we
need only four bits and one char is sufficient. We do not need to use four int because
that would waste too much storage space. If we want to turn off all LEDs, we set the
value to 0000b, namely zero. If we want to turn on all LEDs, we set the value to 1111b, or
15d. If we want to turn on the center two LEDs, the value is 0110b or 6d.

Another example is representing colors. We usually use RBG for red, blue, and green
and use 8 bits for each. One single color needs 24 bits and one 32-bit int is sufficient;
11111111b means the brightest of the color.

ECE264 Purdue University, Lecture 03 12 Yung-Hsiang Lu



Red Green Blue Color
1111 1111 1111 1111 1111 1111 b white
1111 1111 0000 0000 0000 0000 b (brightest) red
0000 0000 1111 1111 0000 0000 b (brightest) green
1111 1111 1111 1111 0000 0000 b (brightest) yellow
0000 1111 0000 1111 0000 1111 b gray
0000 0011 0000 0011 0000 0011 b (darker) gray

We can combine 4 binary bits into 1 hexademical digit:

binary hexadecimal decimal
0 0 0
1 1 1
10 2 2
11 3 3
100 4 4
101 5 5
110 6 6
111 7 7

1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

In C, a hexadecimal number has prefix “0X”: 0XA, 0XB ... We can rewrite the brightest
red as 0XFF0000 and the brightest blue as 0X0000FF.

5 Bitwise Operations

5.1 And / Or

Many applications require modifying individual bits. For example, suppose we want to
brighten the blue components in an image, we should increase only the bits belonging to
blue, without changing the red nor the blue components. In this case, we need to use a
mask to isolate the blue components.

ECE264 Purdue University, Lecture 03 13 Yung-Hsiang Lu



int color = ... / * the color of a pixel * /
int blueComponent = color & 0X0000FF; / * bitwise AND * /
blueComponent * = 2; / * twice brighter * /
if (blueComponent > 0XFF) / * saturate * /
{

blueComponent = 0XFF;
}
color = color | blueComponent; / * bitwise OR * /

5.2 Shift

Now let’s go back to our LEDs. Suppose the rightmost LED is turned on right now (0001b)
and we want to move the on LED left by one (0010b). We can multiple the number by 2d

or shift it left by one bit. In fact, multiplying by 2d is equivalent to shifting left by one bit.
Multiplying a number by 2n

d
is equivalent to shifting the number by n bits. There may

be, however, performance difference. Shifting left can be much faster than multiplication
(dependent on the hardware design).

char LEDs = 0x1;
LEDs <<= 1;
/ * LEDs is 0x2 * /

We can also shift right by using >>.

Suppose we want to convert an RGB image into a gray-level (0 - 255) image of the red
component only. For each pixel, we can find the gray level by using

int color .... / * RGB of a pixel * /
int redColor = color & 0XFF0000;
unsigned char grayLevel = redColor >> 16;

5.3 OR and XOR

We have seen bitwise AND (&). There are two other types of bitwise operations: OR (|)
and exclusive or, XOR (∧).

ECE264 Purdue University, Lecture 03 14 Yung-Hsiang Lu



a b a & b a | b a ∧ b
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The rules are

• a & b is true (1) if both a and b are true (1).

• a | b is true (1) if one or both a and b are true (1).

• a ∧ b is true (1) if a and b are different.

Bitwise operations may not seem important or necessary in applications where storage
is abundant. However, when you handle large amounts of data, such as images and
videos, saving a few bits per pixel can lead to significant savings in cost and execution
time. In some embedded systems, memory is limited and you need to be careful how to
use storage. If you are designing a spacecraft, adding another memory chip can make the
system too heavy to reach space.

6 Operator Precedence

What is the value of

3 + 2 * 4

Is it

(3 + 2) * 4 = 20

or

3 + (2 * 4) = 11?

ECE264 Purdue University, Lecture 03 15 Yung-Hsiang Lu



Multiplication and division have higher precedence than addition and subtraction. There-
fore, the second is the correct answer. In C, parentheses have the highest precedence so
you can always use parentheses to change or to emphasize the precedence you want. On
page 84 on ABoC, you can find a table showing the precedence of operators. In general,
use simple expressions to avoid confusion. Break a complication formula into several
simpler ones to ensure correct order of computation. Use parentheses when you are not
sure about the precedence rules in C.

What is the output of this program?

/ * precedence1.c * /
#include <stdio.h>
int main(int argc, char * argv[])
{

int a = 1;
int b = 2;
int c = 3;
b = c + a++;
printf("%d %d %d\n", a, b, c);
c = ++a + b;
printf("%d %d %d\n", a, b, c);
a = -c + b;
printf("%d %d %d\n", a, b, c);
return 0;

}

/ *
2 4 3
3 4 7
-3 4 7

* /

The value of b should be 3 + 1 = 4, right? We know a ++ increments a by one. The
question is whether this increment occurs before or after we assign the value to b. If it is
before, b should 5. If it is after, b should be 4. It turns out a ++ increments after and ++
a increments before the assignment. Thus, the next line has c = 3 + 4 = 7 . Negation
-c occurs before addition so a = -7 + 4 = -3 .

Now, we know how precedence affects the results. How about the next program?

/ * precedence2.c * /
#include <stdio.h>
int main(int argc, char * argv[])
{

ECE264 Purdue University, Lecture 03 16 Yung-Hsiang Lu



int a = 1;
int b = 2;
int c = 3;
int d = 4;
int e = 5;
int x = e ++ % -- d * c / b - a;
int y = e ˆ -- d * ++ c - b % a;
printf("%d %d\n", x, y);
return 0;

}

/ *
2 14

* /

The answers are 2 and 14. How do we get the answers? Honestly, I would not even try
to analyze the expressions. Whoever wrote the program does not know how to write
programs. It is important to write clear programs. The statements are too complicated
for human to read and to debug. Some people believe that writing mysterious programs
enhance job security, “If nobody understands your program, you can’t be fired.” This is
completely wrong. If you talk to managers, they will tell you that they would fire people
before their mysterious code is integrated into the overall system. Mysterious code will
make you fired sooner.

ECE264 Purdue University, Lecture 03 17 Yung-Hsiang Lu


