
ECE 264 Advanced C Programming

Contents

1 Data Type 1

2 Array 2

3 Array and Function 5

4 Array and Pointer 6

5 Pointer and Address 7

6 Reuse Function 9

1 Data Type

We have seen several types in C already, including integer, character, and string. In fact,
C does not have real string. In C, a string is an array of characters. We will talk about
arrays a littler later. Why do we need different data types in C? First, different types
have different sizes. For example, float is single-precision floating point and double is
double-precision floating point. The maximum value of float (4 bytes) is approximately
10

38. The maximum value of double (8 bytes) is approximately 10
308. If double can hold

more numbers, why do we use float? Performance. Double-precision operations usu-
ally are much slower. If you do not need the precision, you can improve performance by
using float. Another reason of different types is the operations. When two integers are
added, they are added bit by bit. When two floating point numbers are added, they have
to be aligned by their decimal points first. C does not explicitly define the size of each
type, even though a character is usually one byte, or 8 bits. It is value is -128 to 127. An
integer is usually 4 bytes, between -2 billion (approximately) to 2 billion (approximately).
You can use sizeof(int) to find out the size (bytes) of an integer.

What is the possible result of the following statement?

ECE264 Purdue University, Lecture 02 1 Yung-Hsiang Lu

double a = /* a very large number */
double b = /* a very small number */
double c = a + b - a; /* Is c the same as b? */

No, cmay be different from b because b is lost in a + b (a is too large).

In C, each character is also an integer, based on it corresponding ASCII (American Stan-
dard Code for Information Interchange) value, for example, ’a’ is is 97 and ’A’ is 65. In C,
a control character starts with backslash \ (also called escape character). A newline is ’\n’
and a tab is ’\t’.

2 Array

Computer programs are very good at doing the same operations on different data. For
example, adding two vectors, each with 20 elements.

/* array.c */
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
int main(int argc, char * argv[])
{

const int vecSize = 20;
int veca[vecSize];
int vecb[vecSize];
int vecSum[vecSize];
int cnt;
struct timeval currTime;
gettimeofday(&currTime, NULL);
srand(currTime.tv_usec);
/* use the current microsecond to

initialize the random number */
for (cnt = 0; cnt < vecSize; cnt ++)

{
veca[cnt] = rand() % 1000; /* between 0 and 999 */
vecb[cnt] = rand() % 1000;

}
for (cnt = 0; cnt < vecSize; cnt ++)

{
vecSum[cnt] = veca[cnt] + vecb[cnt];

}

ECE264 Purdue University, Lecture 02 2 Yung-Hsiang Lu

for (cnt = 0; cnt < vecSize; cnt ++)
{
printf("%3d + %3d = %4d\n",

veca[cnt], vecb[cnt], vecSum[cnt]);
}

return 0;
}

This program introduces many new concepts. First, we declare a constant using const.
By adding const, the compiler will detect whether you accidentally modify the value.
A major source of problems in programs is accidental modification. Use the compiler to
help you detect errors. The next three lines declare and define three arrays of integers.
An array is like a vector. Each array has 20 elements. In C, when an array is declared
and defined, the elements’ values are not initialized. It is your responsibility to initialize
the elements. In fact, you should always initialize the elements. Using uninitialized
elements is a common mistake. Worse, your program may run correctly sometimes
(depending on the computers). The next line declares an integer counter.

We are going to assign the elements by using random numbers. To make the elements
truly random, we set the seed of the random number generator by calling srand. The
seed has to be something that is hard to predict. We will use the current microsecond as
the seed. This is achieved by calling gettimeofday. This function returns a structure
of two fields: second and microsecond. We will talk about structures later. Right now,
just remember that this is a way to set the random number generator. The next two lines
initialize the elements in the two vectors. This line says

1. initialize cnt to zero.

2. If cnt’s value is smaller than vecSize, execute the code inside the curly bracket { ...
}. If the condition is false, jump to the code after the close bracket }.

3. after finishing one iteration, add one to cnt, go back to step 2.

The for line has three parts, separated by two semicolons. The part before the first semi-
colon is the initialization and executes only once. The part between the two semicolons is
the condition and it is checked before running the code inside the bracket. If the condi-
tion is satisfied, the code inside the brackets is executed. If the condition is false, jump to
the code after the pair of brackets. The third part is executed after each iteration. In this
example, the value of cnt increases by one after each iteration.

In C,

cnt ++; /* plus plus */

ECE264 Purdue University, Lecture 02 3 Yung-Hsiang Lu

means taking the current value of cnt, adding one, putting the new value back to cnt. If
the original value is 7, the new value is 8.

Similarly,

cnt --; /* minus minus */

means taking the current value of cnt, subtracting one, putting the new value back to
cnt.

You can also use the following statements

cnt += 1; /* same as cnt ++ */
cnt -= 1; /* same as cnt -- */

You can replace 1 by another number

cnt += 5; /* same as cnt ++ five times */
cnt -= 3; /* same as cnt -- three times */

The variable cnt is called the array index. In C, the index starts from zero and ends at
size - 1 (inclusive). It is not between 1 and size. This is a common mistake.

The next for block takes each pair of elements from the two vectors, adds them, and
stores the result in vecSum. Finally, the last for block prints the result. We can specify
the number of digits used for each field by using “%3d”. In this case, 3 digits are used for
each element in veca or vecb. This is sufficient because each element is between 0 and
999. Each element in vecSum can be as large as 1998 so we give four digits. The output
of one execution is

255 + 420 = 675
355 + 672 = 1027
658 + 461 = 1119
925 + 765 = 1690
423 + 791 = 1214
68 + 282 = 350
937 + 79 = 1016
405 + 917 = 1322
125 + 394 = 519
664 + 885 = 1549

ECE264 Purdue University, Lecture 02 4 Yung-Hsiang Lu

276 + 346 = 622
361 + 75 = 436
984 + 682 = 1666
966 + 989 = 1955
384 + 187 = 571
281 + 640 = 921
607 + 636 = 1243
664 + 266 = 930
449 + 590 = 1039
383 + 872 = 1255

If you execute the same program several times, you will see different numbers because
we use a random number generator. In this example, we do not use the values of argc
nor argv. In a C program, a function does not have to use the arguments. When you
compile a program, the compiler will give a warning message.

3 Array and Function

If a program can only add 20 elements of random values, the program is not particularly
interesting. We are going to create a function that can add arrays of different sizes.

/* array2.c */
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
int addVector(int * va, int * vb, int * vsum, int size)
{

int cnt;
for (cnt = 0; cnt < size; cnt ++)

{
vsum[cnt] = va[cnt] + vb[cnt];

}
return 0;

}
int main(int argc, char * argv[])
{

const int vecSize = 20;
int veca[vecSize];
int vecb[vecSize];
int vecSum[vecSize];

ECE264 Purdue University, Lecture 02 5 Yung-Hsiang Lu

int cnt;
struct timeval currTime;
gettimeofday(&currTime, NULL);
srand(currTime.tv_usec);
for (cnt = 0; cnt < vecSize; cnt ++)

{
veca[cnt] = rand() % 1000;
vecb[cnt] = rand() % 1000;

}
addVector(veca, vecb, vecSum, vecSize);
for (cnt = 0; cnt < vecSize; cnt ++)

{
printf("%3d + %3d = %4d\n",

eca[cnt], vecb[cnt], vecSum[cnt]);
}

return 0;
}

The function addVector takes four arguments: the first two are the input arrays, the
third is the output array, and the last is the size of the arrays. What do these asterisksmean
in the arguments? Before explaining this, we need to understand arrays and pointers in
C.

4 Array and Pointer

In C, an array’s name represents the starting location of a continuous piece of memory,
as illustrated in the following figure. In other words, the name of the array is a pointer
to a piece of memory. The size of this piece of memory is the product of the number of
elements and the size of each element (remember we mentioned different data types have
different sizes?).

veca

The pointer itself also occupies memory space. When we pass an array to a function,
we pass that pointer to the function and the function can modify the elements. In C, a
pointer is declared with an asterisk.

int * va; /* a pointer to an integer or an array of integer */

ECE264 Purdue University, Lecture 02 6 Yung-Hsiang Lu

C’s arrays do not know their own sizes; therefore, we also have to pass the size into
the function as the last parameter. Remember the index’s range is between 0 and size -
1 (inclusive). Giving an index outside the allowed range is a common mistake. This
mistake (in most cases) cannot be detected by a compiler and can cause a program to
crash at run-time.

C does not automatically initialize variables. When you declare a variable or a pointer

int va;
int * pa;

you must always initialize their values before using them. Uninitialized variables are
common sources of errors. Moreover, the program’s behavior is unpredictable.

/* Do NOT do this */
int * pa; /* not initialized */
if (pa == 0) /* result unpredictable */
{

...
}

because pa has not been initialized. The condition is meaningless.

5 Pointer and Address

A pointer does not have to be the beginning of an array. A pointer can point to a variable.

int val1 = 5;
int val2 = 10;
int * ptr;
printf("%d %d\n", val1, val2);
ptr = & val1; /* ptr points to the address of val1 */

* ptr = 31; /* change the value of the address pointed by ptr */
printf("%d %d\n", val1, val2);
ptr = & val2;

* ptr = 97;
printf("%d %d\n", val1, val2);

ECE264 Purdue University, Lecture 02 7 Yung-Hsiang Lu

The output of this section of code is

5 10
31 10
31 97

In this example, two variables are assigned the values of 5 and 10. Then, ptr points to
the address of val1. In C, & means the address of a variable. When we want to change
the value of the address pointed by ptr, we need to add asterisk * ptr. Then ptr points
to the address of val2 and modifies the value. Can we write this?

ptr = 86;

The answer is both yes and no. You will receive a warning message but the program can
execute. What does this line do? It assigns an address (value 86) to ptr. This is all right.
However, if you want to change the value at this location

* ptr = 67;

The program will crash (for example, ”Segmentation fault” because the program is not
allowed to modify the value at this particular memory address). In general, a program
does not control which memory address it can use. It has to obtain the address by using
&.

The printf function displays the value of a variable. Is there a way to input the value
from a keyboard? Yes, of course.

int v;
scanf("%d", & v);

When a program reaches this line, the program will stop and wait for the user to enter a
value (and hit the Enter key). Then, v has the value entered by the user.

ECE264 Purdue University, Lecture 02 8 Yung-Hsiang Lu

6 Reuse Function

We have created a function to add two arrays. We can reuse the function to add arrays of
different sizes since the size is given into the function as an argument.

/* array3.c */
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
int addVector(int * va, int * vb, int * vsum, int size)
{

int cnt;
for (cnt = 0; cnt < size; cnt ++)

{
vsum[cnt] = va[cnt] + vb[cnt];

}
return 0;

}
int main(int argc, char * argv[])
{

const int vecSize1 = 20;
const int vecSize2 = 10;
int veca[vecSize1];
int vecb[vecSize1];
int vecSum1[vecSize1];
int vecc[vecSize2];
int vecd[vecSize2];
int vecSum2[vecSize2];
int cnt;
struct timeval currTime;
gettimeofday(&currTime, NULL);
srand(currTime.tv_usec);
for (cnt = 0; cnt < vecSize1; cnt ++)

{
veca[cnt] = rand() % 1000;
vecb[cnt] = rand() % 1000;

}
addVector(veca, vecb, vecSum1, vecSize1);
/* call it first time */
printf("vecSum1 :\n");
for (cnt = 0; cnt < vecSize1; cnt ++)

{
printf("%3d + %3d = %4d\n",

ECE264 Purdue University, Lecture 02 9 Yung-Hsiang Lu

veca[cnt], vecb[cnt], vecSum1[cnt]);
}

for (cnt = 0; cnt < vecSize2; cnt ++)
{
vecc[cnt] = rand() % 1000;
vecd[cnt] = rand() % 1000;

}
addVector(vecc, vecd, vecSum2, vecSize2);
/* call it again */
printf("vecSum2 :\n");
for (cnt = 0; cnt < vecSize2; cnt ++)

{
printf("%3d + %3d = %4d\n",

vecc[cnt], vecd[cnt], vecSum2[cnt]);

}
return 0;

}

In this example, addVector is called twice with different arrays of different sizes. Of
course, we can create another function that initializes the values in the arrays:

/* array4.c */
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

void initVector(int *va, int size)
{

int cnt;
for (cnt = 0; cnt < size; cnt ++)

{
va[cnt] = rand() % 1000;

}
}

int addVector(int * va, int * vb,
int * vsum, int size)

{
int cnt;
for (cnt = 0; cnt < size; cnt ++)

{

ECE264 Purdue University, Lecture 02 10 Yung-Hsiang Lu

vsum[cnt] = va[cnt] + vb[cnt];
}

return 0;
}

int main(int argc, char * argv[])
{

const int vecSize1 = 20;
const int vecSize2 = 10;
int veca[vecSize1];
int vecb[vecSize1];
int vecSum1[vecSize1];
int vecc[vecSize2];
int vecd[vecSize2];
int vecSum2[vecSize2];
int cnt;
struct timeval currTime;
gettimeofday(&currTime, NULL);
srand(currTime.tv_usec);
initVector(veca, vecSize1);
initVector(vecb, vecSize1);
addVector(veca, vecb, vecSum1, vecSize1);
printf("vecSum1 :\n");
for (cnt = 0; cnt < vecSize1; cnt ++)

{
printf("%3d + %3d = %4d\n",

veca[cnt], vecb[cnt], vecSum1[cnt]);
}

initVector(vecc, vecSize2);
initVector(vecd, vecSize2);
addVector(vecc, vecd, vecSum2, vecSize2);
printf("vecSum2 :\n");
for (cnt = 0; cnt < vecSize2; cnt ++)

{
printf("%3d + %3d = %4d\n",

vecc[cnt], vecd[cnt], vecSum2[cnt]);
}

return 0;
}

We add a new function initVector. It does not return anything so the function’s return
type is void. You can probably guess that a function does not have to return int. A

ECE264 Purdue University, Lecture 02 11 Yung-Hsiang Lu

function can also return char, float, or double.

Here is an important way to reduce the possibility of mistakes in a program. A good
programmer detects and removes similar code by creating functions. If you find that
you are writing code in several places and the code is identical or somewhat similar,
you should create a function so that the code is in a single place. Why? Because you
have to change only one place later, if any change is needed. Assume that you will
change the same programs many times — because you will. Consider this example, if
you want each element to be between -50 and 9590, you need to change only one place
in initVector. This may not seem much improvement. However, as your program
becomes larger and more complex, you will quickly lose track of how many places to
change. A programwith several similar pieces of code is likely to have mistakes. When
you need to change the code, you will likely change some places but forget to change the
other places. As a result, the programwill behave in a strange way. In some test cases, the
program is correct (executing the code you have recently changed). In some other cases,
the program is wrong (executing the code you forgot to change). This type of mistakes is
very hard to find and very time-consuming to correct. It is better to prevent the problems
all together from the beginning. Do not copy-paste code. You should create a function
instead.

Copy-paste code in multiple places is a common source for mistakes. When you want
to change something, you have to change all places. If you forget to change all places, the
program is incorrect. Copy-paste code seems to allow you to create a lot of code quickly,
but you will spend many hours finding and fixing problems later.

In rare cases, you may copy-paste code for performance reasons (calling a function may
slightly slow down a program). However, such cases are rare and you should not worry
about it in ECE 264. You need towrite a correct program before making it fast.

ECE264 Purdue University, Lecture 02 12 Yung-Hsiang Lu

