
ECE 264-2 Final Exam

3:20-5:20PM, May 8, 2010

I certify that I will not receive nor provide aid to any other student for this exam.

Signature:

You must sign here. Otherwise, you will receive 1-point penalty.

Did you fill the on-line course evaluation before May 2?

Yes No

This exam is printed double sides. Please read the questions carefully. Two common mistakes are
answering wrong questions and failing to answer all questions.

This is an open-book, open-note exam. You can use any book or note or program printouts.

Please turn off your cellular phone and iPod. No electronic device is allowed.

1

Contents

1 Recursion (4 points) 4

2 Binary Search Tree (2 points) 6

3 Arithmetic Evaluation (3 point) 7

4 Complexity (4 points) 8

5 Binary Search (4 points) 9

6 Integer Partition (4 points) 11

Total Score: out of 21.

2

This page is blank. You can write answers here.

3

1 Recursion (4 points)

Rewrite the following code to a non-recursive function.

#include <stdio.h>
#include <stdlib.h>
int rec1(int n, int k)
{

if (n < k) { return 0; }
if (k == 0) { return 1; }
return 3 * rec1(n - 1, k - 1) + 2 * rec1(n - 1, k);

}

int rec2(int n, int k)
{

/* do not use recursion */
int * * val; /* array of dimension (n + 1) x (k + 1) */
int i, j; /* counters upto n and k */
int result;
/* declare additional local variables, if necessary */

/* check termination conditions (1 point) */

/* allocate memory */
val = malloc((n + 1) * sizeof (int));
for (i = 0; i <= n; i ++)
{ val[i] = malloc((k + 1) * sizeof(int)); }

4

/* initialize val[i][j] (1 point) */

/* compute the answer without recursion (2 point) */

result = val[n][k];
/* release memory */
for (i = 0; i <= k; i ++)
{ free(val[i]); }

free (val);
return result;

}

5

2 Binary Search Tree (2 points)

Draw the binary tree as numbers are inserted.

insert 9
insert 3
insert 11
insert 2
insert 1
insert 22
==> draw tree

continue to add more nodes
insert 19
insert 6
insert 17
insert 34
insert 7
insert 5
==> draw tree

6

3 Arithmetic Evaluation (3 point)

Draw the evaluation tree for the following arithmetic expression

(1 + 2) * (3 * (4 + 5)) - (6 + 7)

7

4 Complexity (4 points)

#include <stdio.h>
void f(int x, int * c)
{

int i;
(*c) ++;
if (x == 0)
{ return; }

for (i = 0; i < x; i ++)
{

f(i, c);
}

}
int main(int argc, char * argv[])
{

int c = 0;
f(1, & c);
printf("L1: c = %d\n", c);

c = 0;
f(2, & c);
printf("L2: c = %d\n", c);

c = 0;
f(3, & c);
printf("L3: c = %d\n", c);

/* suppose n is a positive integer */
c = 0;
f(n, & c);
printf("L4: c = %d\n", c);

return 0;
}

What is the value of c ?

• at L1? (1 point).

• at L2? (1 point).

• at L3? (1 point).

• at L4 for a positive integer n? (1 point).

8

5 Binary Search (4 points)

Write a recursive function for binary search.

int search(int * a, int n, int v, int h, int t)
/* a: an arry to be searched, sorted in ascending order

n: number of elements in the array
v: value to search
[h, t]: range of index to search

return 0 if v is not an element of a
return 1 if v is an element of a
3 points (Caution: one point in the main function)

*/
{

9

}
int main(int argc, char * argv[])
{

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
int n = sizeof(a) / sizeof(int);
/* how to call search to find whether 4 is an element of a? */
/*
<=== 1 point ===>

*/
printf("search 4 = %d\n", search());
return 0;

}

10

6 Integer Partition (4 points)

Write a function to compute the number of ways to partition a positive integer n so that the num-
bers used in each partition are equal or increasing. For example, if n is 4, the following are counted

1 + 1 + 1 + 1
1 + 1 + 2
1 + 3
2 + 2
4

but the following are not counted

1 + 2 + 1
2 + 1 + 1
3 + 1

type? f(int n, int * c, additional arguments?)
{

/* *c stores the value of the number of ways to partition n */

}
int main(int argc, char * argv[])
{

int c = 0;
int n = 20;
f(n, & c, ...);
printf("There are %d ways to partition %d\n", c, n);
return 0;

}

11

