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Functions in C Programs

• Functions are fundamental building blocks.

• A C program starts at the “main” function.

• Functions are essential for code reuse.

• Code reuse: perform similar tasks, differences controlled 

by the input arguments. Do not copy-paste code in 

multiple places in a program.

• We have used some functions

– printf

– scanf

– strtol
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Compare Two Arguments
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Function Return Value
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Modify the Argument
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void means return nothing

x is still 8 after 

calling the function



Call by Value

A function copies the value to the function’s argument.

void incr(int a) …

int x = 8;

incr(x); /* copy x’s value to a */

a ++; /* a becomes 9, x is still 8 */

similar to

int x = 8;

int y = x;

y ++; /* y is 9, x is still 8 */

Yung-Hsiang Lu 6

Address Data

somewhere (&x) 8

somewhere (&a) 8 9



Address as Argument
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x is 9 after calling

the function

a pointer

address



Call by Address

A function copies the address to the argument.

void incr(int * a) …

int x = 8;

incr(& x); /* copy x’s value to a */

(*a) ++; /* a becomes 9, so is x */

similar to

int x = 8;

int * y = & x;

(*y) ++; /* x is 9 */
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Address Data

somewhere (&x) 8

somewhere (&a) & x



Swap Function
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Must use pointers and addresses.

swap(int a, int b) will not work.



Recursion (Function calling Itself)
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Calling itself

factorial:

f(1) = 1

f(n) = n × f(n-1)



Structure of Recursive Calls

• function with arguments

1. If the terminal condition is satisfied, solve the 

problem and return the result

2. Otherwise, divide the problem into smaller parts and 

solve individual parts by calling the function with new 

arguments

if (a == 1) { return 1; } /* step 1 */

else { return a * f(a-1); } /* step 2 */

• This is an example of a problem-solving strategy called 

divide and conquer.
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Recursion Iteration
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Fibonacci Number
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Fibonacci Number:

f(0) = 0

f(1) = 1

f(n) = f(n-1) + f(n-2)



Fibonacci Number by Iteration
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When a is large, this is

much faster than the

previous implementation.



Which statement is correct? You may 
choose multiple answers.
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Correct - Click anywhere to 
continue

Incorrect - Click anywhere to 
continue

You answered this correctly!

Your answer:

The correct answer is:
You did not answer this question 

completelyYou must answer the question 
before continuing

SubmitSubmit ClearClear

A) A function may have zero, one, 
two, or more arguments.

B) A function may return a value.

C) A function may call itself.

D) A function may call another 
function.



What is the value of x after calling the 
function?
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Correct - Click anywhere to 
continue

Incorrect - Click anywhere to 
continue

You answered this correctly!

Your answer:

The correct answer is:
You did not answer this question 

completelyYou must answer the question 
before continuing

SubmitSubmit ClearClear

void f(int a)  
{

a -= 2;   
}   
int x = 7;   
f(x);   

x's value 
is       



Function
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