
Functions

Yung-Hsiang Lu

1Yung-Hsiang Lu

Functions in C Programs

• Functions are fundamental building blocks.

• A C program starts at the “main” function.

• Functions are essential for code reuse.

• Code reuse: perform similar tasks, differences controlled

by the input arguments. Do not copy-paste code in

multiple places in a program.

• We have used some functions

– printf

– scanf

– strtol

Yung-Hsiang Lu 2

Compare Two Arguments

Yung-Hsiang Lu 3

Function Return Value

Yung-Hsiang Lu 4

Modify the Argument

Yung-Hsiang Lu 5

void means return nothing

x is still 8 after

calling the function

Call by Value

A function copies the value to the function’s argument.

void incr(int a) …

int x = 8;

incr(x); /* copy x’s value to a */

a ++; /* a becomes 9, x is still 8 */

similar to

int x = 8;

int y = x;

y ++; /* y is 9, x is still 8 */

Yung-Hsiang Lu 6

Address Data

somewhere (&x) 8

somewhere (&a) 8 9

Address as Argument

Yung-Hsiang Lu 7

x is 9 after calling

the function

a pointer

address

Call by Address

A function copies the address to the argument.

void incr(int * a) …

int x = 8;

incr(& x); /* copy x’s value to a */

(*a) ++; /* a becomes 9, so is x */

similar to

int x = 8;

int * y = & x;

(*y) ++; /* x is 9 */

Yung-Hsiang Lu 8

Address Data

somewhere (&x) 8

somewhere (&a) & x

Swap Function

Yung-Hsiang Lu 9

Must use pointers and addresses.

swap(int a, int b) will not work.

Recursion (Function calling Itself)

Yung-Hsiang Lu 10

Calling itself

factorial:

f(1) = 1

f(n) = n × f(n-1)

Structure of Recursive Calls

• function with arguments

1. If the terminal condition is satisfied, solve the

problem and return the result

2. Otherwise, divide the problem into smaller parts and

solve individual parts by calling the function with new

arguments

if (a == 1) { return 1; } /* step 1 */

else { return a * f(a-1); } /* step 2 */

• This is an example of a problem-solving strategy called

divide and conquer.

Yung-Hsiang Lu 11

Recursion Iteration

Yung-Hsiang Lu 12

Fibonacci Number

Yung-Hsiang Lu 13

Fibonacci Number:

f(0) = 0

f(1) = 1

f(n) = f(n-1) + f(n-2)

Fibonacci Number by Iteration

Yung-Hsiang Lu 14

When a is large, this is

much faster than the

previous implementation.

Which statement is correct? You may
choose multiple answers.

Yung-Hsiang Lu 15

Correct - Click anywhere to
continue

Incorrect - Click anywhere to
continue

You answered this correctly!

Your answer:

The correct answer is:
You did not answer this question

completelyYou must answer the question
before continuing

SubmitSubmit ClearClear

A) A function may have zero, one,
two, or more arguments.

B) A function may return a value.

C) A function may call itself.

D) A function may call another
function.

What is the value of x after calling the
function?

Yung-Hsiang Lu 16

Correct - Click anywhere to
continue

Incorrect - Click anywhere to
continue

You answered this correctly!

Your answer:

The correct answer is:
You did not answer this question

completelyYou must answer the question
before continuing

SubmitSubmit ClearClear

void f(int a)
{

a -= 2;
}
int x = 7;
f(x);

x's value
is

Function

Yung-Hsiang Lu 17

Your Score {score}

Max Score {max-score}

Number of Quiz
Attempts

{total-attempts}

Question Feedback/Review Information Will Appear
Here

Review QuizContinue

