Allocate and Release Memory

Yung-Hsiang Lu

Why to Allocate and Release?

Memory stores data. In many scenarios, programmers
do not know how much memory is needed when writing
the programs.

If more memory is needed, a program must be able to
allocate more memory.

If allocated memory is no longer needed, the memory
should be released.

If memory is not explicitly allocated by the program, the
memory cannot be explicitly released by the program.

Yung-Hsiang Lu

Fila

Edit

Mavigate Project Window Help

| 9

aJ

#include =stdio.h=>
#include =stdlib.h=

-;‘::Iv

void printArray(int * 1p, int size)

{

(] e

H

int index;
for (index = 0; index = size; index ++)
{
printf("=4ad ", iplindex]);
1
printf("\nyn");

main(int argc, char * argv([])

allocate memory
must specify size

int * 1ptr;

int size = 8;

/* allocate memory */

iptr = malloc(size * sizeof(int));

NULL)

if (iptr ==
{
printf("malloc failyn");

return -1;

1
/* assign values to the elements */
int index;
for (index = 9; index = size; index ++)
{
iptrlindex] = 3 * index + 5;
1
printArray(iptr, sizel;
/* release memory */

free (iptr); -

return Q;

Yung-Hsiang Lu

wirit o b e Smart Incart | 27 |

Program Output

Terminal

File Edit wiew Terminal Help
[Ubuntu Linux] ./Memory
5 8 11 14 17 20 23 26

[Ubuntu Linux] I

Yung-Hsiang Lu

£ man malloc{3) - Mozilla Firefox 9](=]3]
File Edit Wiew History Bookmarks Yahoo! Tools Help

@ - c 'y (m |http:,l',l'www.manpagez.u:u:um,l'man,l'S,l'maIIu:u:,l' 'ﬁ? *| |*|Gu:u:-gle J‘-|
DESCRIPTION 3
The malloc({), calloc{)}, wvalloc{), realloc({}, and reallocf({) functions
allocate memory. The allocated memory i1z aligned such that it can be
used for any data type, including Altivec- and S3E-related types. The
free() functiocn frees allocations that were created via the preceding

allocation functions.

The mallee() function allocates =ize bytes of memory and returns a
pointer to the allocated memory.

The ealleoc({) function contiguously allocates encugh space for count
objects that are size bytes of memory each and returns a polnter to the
allocated memory. The allocated memory is filled with bytes of wvalue
Zero.

The wvallec{) function allocates size bytes of memory and returns a
pointer to the allocated memory. The allocated memory 1s aligned on a
page boundary.

The realleoe{) function tries to change the =ize of the allocation pointed
to by ptr to =sizge, and returns ptr. If there i1z not encugh room to
enlarge the memory allocation pointed to by ptr, realleoc() creates a new

allocation, copies as much of the old data pointed to by ptr as will fit
to the new allocation, frees the o0ld allocation, and returns a pointer to
the allocated memory. If ptr is NULL, realleoe{) i3 identical to a call
to malloe{}) for size bytes. If size 13 zeroc and ptr 1s not NULL, a new,
minimum sized object 1z allocated and the original object is freed.

The reallocf () function is identical to the realloe(} function, except

that it will free the passed pointer when the requested memory cannot be
allocated. This 13 a FreeBSD specific API designed to ease the problems =
e Y Ny [HER. g | R, P T e [B, ey I o s

£ | >

Done

£ man malloc(3}) - Mozilla Firefox

File

9](=]3;

Wieww History Bookmarks Y¥ahoo! Tools Help

@ - c 'y (E|http:,l',l'www.manpagez.u:u:um,l'man,l'S,l'maIIu:u:,l' 'ﬁ:'_']* *| |*|Gu:u:-gle J-|

.
If successful, ealleoc{), malloci), realleoeci,;, reallocf (), and walloec()
functions return a pointer to allocated memory. If there iz an error,
they return a NULL pointer and set errno to ENOMEM.
For realloci{}), fthe input pointer is =till wvalid if reallocation failed.
For realloecf (), the input pointer will have been freed if reallocation
failed.
The free({! function does not return a value.
& number of facilities are provided to aid in debugging allocation errors
in applications. These facilities are primarily controlled via environ—
ment wvariables. The recognized environment wvariables and their meanings
are documented below.
The following environment wvariables change the behavior of the alloca-
tion-related functions. v
| 3

Done

How Much Memory Is Used?

Assume we are using a 32-bit (4 byte) computer and
each integer occupies 4 bytes.

Int * Ip; [* 4 bytes */

Ip = malloc (16 * sizeof(int)); [* 64 bytes */
address value /* total 68 bytes */
somewhere (& ip) XXXXX
somewhere XXXXX ¥ ip[0] i
XXXXX + 3 ip[1] 64 bytes
XXXXX + 7 ip[2]

Yung-Hsiang Lu

Memory Management

Always check whether malloc is successful before using
the memory.

Always release memory if it is no longer needed.
Do not release memory if it may be used later.

C does not check whether array indexes are within the
allowed range. It is the programmer’s responsibility.

Int * ip = malloc(16 * sizeof(int));
Ip[100] = 9876; /* gcc does not report any problem */
[* The program will crash during execution */

Do not give zero or negative numbers to malloc.

Yung-Hsiang Lu 8

Two-Dimensional Array (Matrix)

column
Flight Time Boston Chicago New York | San Francisco
Boston 150 60 270
Chicago 140 130 240
New York 60 140 290
San Francisco 260 230 280

The flight time may not be symmetric due to wind.

Yung-Hsiang Lu

row

High-Dimensional Arrays

int a[20]; [* one-dimensional, 20 elements */
int b[10][6]; [* 60 elements */
double c[5][3][2]; /*30=5 3 2elements*/

b[1][3] = 8;
a[3] = b[5][4]
c[2][1][0] = 53.987;

Yung-Hsiang Lu

Allocated Memory =
One-Dimensional Array

Int * ip = malloc(10 * sizeof(int));
/[* 1p points to a pieces of memory for 10 integers */

ip\

Yung-Hsiang Lu

2-D Array = Pointers to Pointers

Int * * matrix = malloc(numRow * sizeof(int *));
for (row = 0; row < numRow; row ++)
{ matrix [row] = malloc(numCol * sizeof(int)); }

matrix

!

matrix[0]

matrix[1]

matrix[2]

matrix[3]

matrix[4]

Vbl

matrix[0][0]

matrix[0][1]

matrix[0][2]

matrix[0][3]

matrix[0][4]

matrix[1][0]

matrix[1][1]

matrix[1][2]

matrix[1][3]

matrix[1][4]

matrix[2][0]

matrix[2][1]

matrix[2][2]

matrix[2][3]

matrix[2][4]

matrix[3][0]

matrix[3][1]

matrix[3][2]

matrix[3][3]

matrix[3][4]

Yung-Hsiang Lu

12

Which statement is correct? You can
choose multiple anssers.

A) malloc has one argument and it is the number
of bytes to allocate

B) free has one argument and it is the number of
bytes to release

C) If malloc fails, the return value is NULL.

D) The data stored in the memory allocated by
malloc are reset to zero.

Correct - Click anywhere to | Incorrect - Click anywhere to

conts
Your answer:

You did not answer this question |

You must answer the question Submit Clear
before continuing

Yung-Hsiang Lu

13

Allocate and Release

Max Score {max-score}

Number of Quiz {total-attempts}
Attempts

Question Feedback/Review Information Will Appear
Here

[Continue][Revieruiz]

Yung-Hsiang Lu 14

