
Allocate and Release Memory

Yung-Hsiang Lu

1Yung-Hsiang Lu

Why to Allocate and Release?

• Memory stores data. In many scenarios, programmers

do not know how much memory is needed when writing

the programs.

• If more memory is needed, a program must be able to

allocate more memory.

• If allocated memory is no longer needed, the memory

should be released.

• If memory is not explicitly allocated by the program, the

memory cannot be explicitly released by the program.

Yung-Hsiang Lu 2

allocate an array of 8 elements

Yung-Hsiang Lu 3

needed for using malloc and free

allocate memory

must specify size

release memory, do not specify size

is malloc successful?

Program Output

Yung-Hsiang Lu 4

man malloc

Yung-Hsiang Lu 5

return value of malloc

Yung-Hsiang Lu 6

How Much Memory Is Used?

Assume we are using a 32-bit (4 byte) computer and

each integer occupies 4 bytes.

int * ip; /* 4 bytes */

ip = malloc (16 * sizeof(int)); /* 64 bytes */

/* total 68 bytes */

Yung-Hsiang Lu 7

address value

somewhere (& ip) XXXXX

somewhere XXXXX ip[0]

XXXXX + 3 ip[1]

XXXXX + 7 ip[2]

…. …

64 bytes

Memory Management

• Always check whether malloc is successful before using

the memory.

• Always release memory if it is no longer needed.

• Do not release memory if it may be used later.

• C does not check whether array indexes are within the

allowed range. It is the programmer’s responsibility.

int * ip = malloc(16 * sizeof(int));

ip[100] = 9876; /* gcc does not report any problem */

/* The program will crash during execution */

• Do not give zero or negative numbers to malloc.

Yung-Hsiang Lu 8

Two-Dimensional Array (Matrix)

The flight time may not be symmetric due to wind.

Yung-Hsiang Lu 9

Flight Time Boston Chicago New York San Francisco

Boston 150 60 270

Chicago 140 130 240

New York 60 140 290

San Francisco 260 230 280

column

row

High-Dimensional Arrays

int a[20]; /* one-dimensional, 20 elements */

int b[10][6]; /* 60 elements */

double c[5][3][2]; /* 30 = 5 3 2 elements */

b[1][3] = 8;

a[3] = b[5][4];

c[2][1][0] = 53.987;

Yung-Hsiang Lu 10

Allocated Memory =

One-Dimensional Array

int * ip = malloc(10 * sizeof(int));

/* ip points to a pieces of memory for 10 integers */

Yung-Hsiang Lu 11

ip

2-D Array = Pointers to Pointers

int * * matrix = malloc(numRow * sizeof(int *));

for (row = 0; row < numRow; row ++)

{ matrix [row] = malloc(numCol * sizeof(int)); }

Yung-Hsiang Lu 12

matrix

matrix[0]

matrix[1]

matrix[2]

matrix[3]

matrix[4]

matrix[0][0] matrix[0][1] matrix[0][2] matrix[0][3] matrix[0][4]

matrix[1][0] matrix[1][1] matrix[1][2] matrix[1][3] matrix[1][4]

matrix[2][0] matrix[2][1] matrix[2][2] matrix[2][3] matrix[2][4]

matrix[3][0] matrix[3][1] matrix[3][2] matrix[3][3] matrix[3][4]

Which statement is correct? You can
choose multiple anssers.

Yung-Hsiang Lu 13

A) malloc has one argument and it is the number
of bytes to allocate

B) free has one argument and it is the number of
bytes to release

C) If malloc fails, the return value is NULL.

D) The data stored in the memory allocated by
malloc are reset to zero.

Correct - Click anywhere to
continue

Incorrect - Click anywhere to
continue

You answered this correctly!

Your answer:

The correct answer is:
You did not answer this question

completelyYou must answer the question
before continuing

SubmitSubmit ClearClear

Allocate and Release

Yung-Hsiang Lu 14

Your Score {score}

Max Score {max-score}

Number of Quiz
Attempts

{total-attempts}

Question Feedback/Review Information Will Appear
Here

Review QuizContinue

