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1 Exam 4 and Final Exam

Exam 4 will be available in Blackboard on April 24 (Friday) after class and due at 2PM

April 27 (Monday). You can use any reference in any book or on-line. You are not
allowed to discuss with anybody. Every question in the examwill be related to recursion.
You are encouraged to submit your answers on-line.

We will have a lecture on April 24 (discussion of shortest and longest paths). The lecture
on May 1 is canceled so you have more time preparing for final exams. The last question
in exam 4 asks youwhether you prefer to take the final exam in class (2 hours 3:20-5:20PM
on May 6) or at home (10 hours 8AM-6PM on May 6).

If you want to take the final exam before May 6, please talk to the instructor.

2 Complexity

In a binary search tree, how many nodes do we need to check in order to determine
whether a value is currently stored in the tree (the BTree search function)? Let’s ask a
different question first. How many nodes does a tree have if the tree has n levels? In the
first level (the root), there is only one node. The next level has at most two nodes. The
third level can have up to four nodes.
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level node
1 1
2 2
3 4
4 8
... ...
n 2n−1

total 2n − 1

If a binary search tree is complete and balanced, searching a tree of 2n − 1 nodes requires
visiting at most n levels. We can eliminate half of the remaining nodes in each step. To
put it in another way, searching a tree of n nodes requires visiting only ≈ lg n nodes; here
lg is the logarithm function using 2 as the base, namely lg n = log

2
n. We usually write log

using 10 as the base, log n = log
10

n.

If we use a binary search tree to sort a sequence of numbers, what is the complexity? What
do we mean by using a tree to sort? We can insert these numbers one by one and then
use in-order to print the numbers. If the tree is balanced after inserting i − 1 numbers,
inserting the ith number has to visit only ≈ lg(i − 1) nodes. Therefore, the complexity is

≈

n∑

i=2

lg(i − 1). (1)

Let’s simplify it by finding an upper bound. We know lg x < lg y if 1 < x < y. Thus,

n∑

i=2

lg(i − 1) <

n∑

i=2

lg(n) < n lg n. (2)

Sorting n numbers using a binary search tree requires n lg n steps.

This is much better than n2 using a linked list. This assumes that the tree is always bal-
anced. In reality, wemay not be that lucky. Let’s consider the situation when the sequence
is already sorted in descending order. When we insert the numbers, only the left subtrees
are used and inserting the ith number has to visit i − 1 nodes. As a result, it takes ≈ n2 to
sort the numbers. Similarly, if the numbers are sorted in ascending order, only the right
subtress are used and the complexity is also n2. For the average cases, we assume the
numbers are not ordered and the tree is “somewhat” balanced, the complexity is n lg n.
The detailed analysis is beyond the scope of ECE 264.
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3 Design Fast Algorithms

Why is it faster to use a binary search tree to sort than to use a linked list? This reveals a
basic principle in designing faster algorithms:

avoid redundant computation.

Why is it slower to compute Fibonacci numbers by using

int Fibonacci(int n)
{
if (n == 0) { return 0; }
if (n == 1) { return 1; }
return (Fibonacci(n - 1) + Fibonacci(n - 2));

}

We compute f(k), 1 ≤ k < n many times. We should remember what we have done and
do not repeat the computation.

When we sort numbers using a linked list, we repeat some computation again and again.
The list is already sorted. Why do we start from the very beginning for every insertion?
Why can’t we jump to somewhere that is closer to the final location of the new number?
That is the idea of a binary search tree. If the new number is larger than some numbers
already in the tree, it is unnecessary to compare with these numbers one by one.

4 Parallel Computing
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