ECE 264 Advanced C Programming

Contents

2009/04/08

1 Exam 3 and Programming Assignment 4

2 Group Discussion (Bonus Points)

3 Doubly Linked List

4 Divide and Conquer and Dynamic Structures

1 Exam 3 and Programming Assignment 4

2 Group Discussion (Bonus Points)

Consider a typical distance table:

Atlanta
Boston
Chicago
Denver
New York
Seattle

From this table, the distance between Atlanta and Boston is 1115 miles; the distance be-
tween New York and Chicago is 818 miles. The table can be stored in a 2-dimensional
array, d[n] [n] . The value n means the number of cities; n is 6 in this example. The value
d[i][j] means the distance between the i ™" city and the j ' city. If i is the same asj,
the two cities are the same and the distance is zero.

0
1115
717
1425
887
2723

1115
0
1013
2015
197
3126

717
1013
0
1026
818
2108

Atlanta Boston Chicago Denver

1425
2015
1026

0
1807
1314

New York Seattle

887
197
818
1807
0
2927

We can modify and generalize a distance table to follow these rules:

ECE264 Purdue University, 2009 /04 /08

1

2723
3126
2108
1314
2927

0

Yung-Hsiang Lu

e The distance to the same location itself, d[i] [i], is always zero.

e The distance from the i " location to the j " location (i #j),d[i][]],isa positive
number as the distance if the two locations are directly connected without passing
through another location in the table. If there are multiple direct routes, choose the

shortest route as the distance. Because one-way streets are possible, d[i] [j] may
be different fromd[j][i].

e If there is no direct connection from the i " location to the j ** location, the distance
between them, d[i][]], is infinity (c0). Please remember thatd[i][]] = oo does
notimplyd[j][i] = oo.

Suppose you are given a distance table of n locations.

Question 1: Write a program to find the shortest distance between any pair of different
locations, by passing through at most k additional locations, 0 < k <n - 2. Since the
distances are always positive numbers, your route should never pass the same location
twice.

Question 2: Write a program to find the longest distance between any pair of different
locations, by passing through at most k additional locations. You can visit each location
at most once.

On April 24, if your group volunteers to present a solution, each member in the group
can receive 1.5 bonus point as part of class participation.

Group Assignments:

Di nkl edi ne Aaron, adi nkl ed@ur due. edu
Ko Seongwoon, ko5@ur due. edu

Li Hetong, |i186@urdue. edu

Schm dt Susanne, schm dsm@ur due. edu
Smth Sean, smth342@urdue. edu

Swi ndl er Joshua, jsw ndl e@urdue. edu

PR R RRRE

Ahuj a Karan, kahuja@urdue. edu

Faber Darrell, dnfaber @urdue. edu

Her dzi na- Huss Dari en, dhuss@urdue. edu
Mahnood Zaeem zmahnood@ur due. edu

M shra Ankur, am shra@urdue. edu
Pesyna Kennet h, kpesyna@ur due. edu

NDNDNDNNDDN

3 Bansal N khil, bansal n@urdue. edu

ECE264 Purdue University, 2009/04 /08 2 Yung-Hsiang Lu

Mal i k Abi sh, amal i k@urdue. edu
Mc Lean Ryan, rntlean@urdue. edu
Aiver lan, ioliver@urdue. edu
Zhou Yang, zhouy@ur due. edu

wWwww

Conaboy M chael, ntonaboy@ur due. edu
Hal | Et han, ekhal | @urdue. edu

Par k Junhyeong, parkl@urdue. edu
Robl es Derrick, djrobles@urdue. edu
Wl fer M chael, mwol fer @urdue. edu

A DA D

Chunduru Nag Varun, nchundur @ur due. edu
Fetter Daniel dfetter @urdue.edu
Lakhmani Vashi sht, vl akhman@ur due. edu
Wet herill Julia, jwetheri @urdue.edu
Whyl and Jon, | whyl and@ur due. edu

o1 o1 01 01 O

Geng Junzhe, jgeng@urdue. edu

Grover Ani mesh, grovera@urdue. edu

Jhaj aria Krishna, Kkjhajari @urdue. edu

Mohanmed Razi p Ahmad Mij ahi d, nohamrea@ur due. edu
Yuki Zeno, zyuki @urdue. edu

(o)l erRNe)INerRNe)]

Al Shehhi Hamad, hal shehh@ur due. edu
Brener Gregory, gbrener @urdue. edu
Chri stman Jacob, christjr@urdue. edu

| zturriaga Manuel, m zturri @urdue. edu
Ki m Do- Hyoung, ki nl30@ur due. edu

N NN NN

Baj aj Arjun, abajaj @urdue. edu
Chen Yi-Kai, chenl7@urdue. edu
Jesse Skylar, sjesse@urdue. edu
Phillips Collin, cnphilli @urdue. edu
Schuman Ri chard, rschuman@ur due. edu

0 00 O 00

@uo Yi cheng, yguo@urdue. edu

Hal | Loren, halllj @urdue. edu

Mehta H rsh, hnehta@urdue. edu
Schieler Curt, cnschiel @urdue. edu
Vadl amudi Ramant h, rvadl anu@ur due. edu

O ©O© O O oo

10 Granger WIlIliam wgranger @urdue. edu

ECE264 Purdue University, 2009 /04 /08 3 Yung-Hsiang Lu

10 Kim Wesl ey, ki nR65@ur due. edu

10 Neuenschwander Tyl er, tcneuens@urdue. edu

10 Pulliam Stuart, spulliam@urdue. edu
10 Raj Vi shwaman, vpraj @urdue. edu

3 Doubly Linked List

Each node in our linked lists has only one link to the next node. In such a list, we can reach
any node from the first node but we cannot reach the first node from any other node. We
can add another link to the previous node and create a doubly linked list. Any node can
reach any other node using the previous or the next link. When handling insertion and
deletion, we need to make sure both the previous and the next links are updated correctly.

The following code shows how to insert a value into a doubly linked list.

#i f ndef DLI NKNODE H
#def i ne DLI NKNODE H
t ypedef struct dlinknode

{
struct dlinknode * | n_next;
struct dlinknode * | n_prev;
int I n_value;

} Node;

Node * DList_copy(Node * n);

voi d DLi st_assign(Node * * nl, Node * n2);
void DList_insert(Node * * n, int v);

int DList_delete(Node * » list, int v);
voi d DList_print(Node * n);

voi d DLi st _destruct (Node * n);

int DList _search(Node * list, int v);
#endi f

#i ncl ude "dl i nknode. h"
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
static Node * Node_construct(int v)
{
Node * n = nall oc(sizeof (Node));
n ->1n_value = v;
n -> | n_next 0;
n->1n_prev 0;

ECE264 Purdue University, 2009/04/08 4

Yung-Hsiang Lu

return n;

}

void DList_insert(Node * * n, int v)
{
Node * p = Node_construct(v);
Node * curr = * n;
Node * prev = * n;
it ((»n) ==0)
{
*N = p;
return;
}
while ((curr I'=0) & ((curr -> In_value) < v))
{
prev = curr;
curr = curr -> I n_next;
}
if (curr == (* n))
{
p ->1In_next = (* n);
(*» n) ->1In_prev = p;
* N = p;

el se
{
p ->In_next = prev -> | n_next;
p ->Iln_prev = prev;
[+ WIl p be the last node in the list? */
if ((prev -> In_next) !'= 0)
{ (prev ->1In_next) ->1In_prev = p; }
prev -> I n_next = p;

}

Exercise: This example shows how to insert. Write the delete function.

4 Divide and Conquer and Dynamic Structures

When we explained binary search, we used an array. Arrays have one major advantage:
we can access any element in a single step. In contrast, in a linked list, we have to follow

ECE264 Purdue University, 2009 /04 /08 5 Yung-Hsiang Lu

the links node by node. However, arrays have one major restriction: the sizes are fixed. In
contrast, a linked list can expand or shrink as needed. Can we combine the performance
of binary search without being restricted to arrays? A binary search tree is one solution.

Doubly linked list is linear meaning that all nodes are linked as a line. If each node has
two links, the links do not have to be related. It is not necessary that any node can reach
any other node using the previous or the next link. It is all right if there is only one path
to any node, from one special node called root. We usually draw a “tree” upside down.
The “root” is at the top and the “leaves” are at the bottom.

ECE264 Purdue University, 2009 /04 /08 6 Yung-Hsiang Lu

