
ECE 264 Advanced C Programming

2009/04/08

Contents

1 Exam 3 and Programming Assignment 4 1

2 Group Discussion (Bonus Points) 1

3 Doubly Linked List 4

4 Divide and Conquer and Dynamic Structures 5

1 Exam 3 and Programming Assignment 4

2 Group Discussion (Bonus Points)

Consider a typical distance table:

Atlanta Boston Chicago Denver New York Seattle
Atlanta 0 1115 717 1425 887 2723
Boston 1115 0 1013 2015 197 3126
Chicago 717 1013 0 1026 818 2108
Denver 1425 2015 1026 0 1807 1314

New York 887 197 818 1807 0 2927
Seattle 2723 3126 2108 1314 2927 0

From this table, the distance between Atlanta and Boston is 1115 miles; the distance be-
tween New York and Chicago is 818 miles. The table can be stored in a 2-dimensional
array, d[n][n]. The value nmeans the number of cities; n is 6 in this example. The value
d[i][j] means the distance between the ith city and the jth city. If i is the same as j,
the two cities are the same and the distance is zero.

We can modify and generalize a distance table to follow these rules:

ECE264 Purdue University, 2009/04/08 1 Yung-Hsiang Lu



• The distance to the same location itself, d[i][i], is always zero.

• The distance from the ith location to the jth location (i 6= j), d[i][j], is a positive
number as the distance if the two locations are directly connected without passing
through another location in the table. If there are multiple direct routes, choose the
shortest route as the distance. Because one-way streets are possible, d[i][j] may
be different from d[j][i].

• If there is no direct connection from the ith location to the jth location, the distance
between them, d[i][j], is infinity (∞). Please remember that d[i][j] = ∞ does
not imply d[j][i] = ∞.

Suppose you are given a distance table of n locations.

Question 1: Write a program to find the shortest distance between any pair of different
locations, by passing through at most k additional locations, 0 ≤ k ≤ n - 2. Since the
distances are always positive numbers, your route should never pass the same location
twice.

Question 2: Write a program to find the longest distance between any pair of different
locations, by passing through at most k additional locations. You can visit each location
at most once.

On April 24, if your group volunteers to present a solution, each member in the group
can receive 1.5 bonus point as part of class participation.

Group Assignments:

1 Dinkledine Aaron, adinkled@purdue.edu
1 Ko Seongwoon, ko5@purdue.edu
1 Li Hetong, li186@purdue.edu
1 Schmidt Susanne, schmidsm@purdue.edu
1 Smith Sean, smith342@purdue.edu
1 Swindler Joshua, jswindle@purdue.edu

2 Ahuja Karan, kahuja@purdue.edu
2 Faber Darrell, dmfaber@purdue.edu
2 Herdzina-Huss Darien, dhuss@purdue.edu
2 Mahmood Zaeem, zmahmood@purdue.edu
2 Mishra Ankur, amishra@purdue.edu
2 Pesyna Kenneth, kpesyna@purdue.edu

3 Bansal Nikhil, bansaln@purdue.edu

ECE264 Purdue University, 2009/04/08 2 Yung-Hsiang Lu



3 Malik Abish, amalik@purdue.edu
3 Mc Lean Ryan, rmclean@purdue.edu
3 Oliver Ian, ioliver@purdue.edu
3 Zhou Yang, zhouy@purdue.edu

4 Conaboy Michael, mconaboy@purdue.edu
4 Hall Ethan, ekhall@purdue.edu
4 Park Junhyeong, park1@purdue.edu
4 Robles Derrick, djrobles@purdue.edu
4 Wolfer Michael, mwolfer@purdue.edu

5 Chunduru Nag Varun, nchundur@purdue.edu
5 Fetter Daniel dfetter@purdue.edu
5 Lakhmani Vashisht, vlakhman@purdue.edu
5 Wetherill Julia, jwetheri@purdue.edu
5 Whyland Jon, jwhyland@purdue.edu

6 Geng Junzhe, jgeng@purdue.edu
6 Grover Animesh, grovera@purdue.edu
6 Jhajaria Krishna, kjhajari@purdue.edu
6 Mohammed Razip Ahmad Mujahid, mohammea@purdue.edu
6 Yuki Zeno, zyuki@purdue.edu

7 Al Shehhi Hamad, halshehh@purdue.edu
7 Brener Gregory, gbrener@purdue.edu
7 Christman Jacob, christjr@purdue.edu
7 Izturriaga Manuel, mizturri@purdue.edu
7 Kim Do-Hyoung, kim130@purdue.edu

8 Bajaj Arjun, abajaj@purdue.edu
8 Chen Yi-Kai, chen17@purdue.edu
8 Jesse Skylar, sjesse@purdue.edu
8 Phillips Collin, cnphilli@purdue.edu
8 Schuman Richard, rschuman@purdue.edu

9 Guo Yicheng, yguo@purdue.edu
9 Hall Loren, halllj@purdue.edu
9 Mehta H’rsh, hmehta@purdue.edu
9 Schieler Curt, cmschiel@purdue.edu
9 Vadlamudi Ramanth, rvadlamu@purdue.edu

10 Granger William, wgranger@purdue.edu

ECE264 Purdue University, 2009/04/08 3 Yung-Hsiang Lu



10 Kim Wesley, kim265@purdue.edu
10 Neuenschwander Tyler, tcneuens@purdue.edu
10 Pulliam Stuart, spulliam@purdue.edu
10 Raj Vishwaman, vpraj@purdue.edu

3 Doubly Linked List

Each node in our linked lists has only one link to the next node. In such a list, we can reach
any node from the first node but we cannot reach the first node from any other node. We
can add another link to the previous node and create a doubly linked list. Any node can
reach any other node using the previous or the next link. When handling insertion and
deletion, we need to make sure both the previous and the next links are updated correctly.
The following code shows how to insert a value into a doubly linked list.

#ifndef DLINKNODE_H
#define DLINKNODE_H
typedef struct dlinknode
{
struct dlinknode * ln_next;
struct dlinknode * ln_prev;
int ln_value;

} Node;

Node * DList_copy(Node * n);
void DList_assign(Node * * n1, Node * n2);
void DList_insert(Node * * n, int v);
int DList_delete(Node * * list, int v);
void DList_print(Node * n);
void DList_destruct(Node * n);
int DList_search(Node * list, int v);
#endif

#include "dlinknode.h"
#include <stdio.h>
#include <stdlib.h>
static Node * Node_construct(int v)
{
Node * n = malloc(sizeof(Node));
n -> ln_value = v;
n -> ln_next = 0;
n -> ln_prev = 0;

ECE264 Purdue University, 2009/04/08 4 Yung-Hsiang Lu



return n;
}

void DList_insert(Node * * n, int v)
{
Node * p = Node_construct(v);
Node * curr = * n;
Node * prev = * n;
if (( *n) == 0)

{

*n = p;
return;

}
while ((curr != 0) && ((curr -> ln_value) < v))

{
prev = curr;
curr = curr -> ln_next;

}
if (curr == (* n))

{
p -> ln_next = (* n);
(* n) -> ln_prev = p;

* n = p;
}

else
{

p -> ln_next = prev -> ln_next;
p -> ln_prev = prev;
/* Will p be the last node in the list? */
if ((prev -> ln_next) != 0)

{ (prev -> ln_next) -> ln_prev = p; }
prev -> ln_next = p;

}
}

Exercise: This example shows how to insert. Write the delete function.

4 Divide and Conquer and Dynamic Structures

When we explained binary search, we used an array. Arrays have one major advantage:
we can access any element in a single step. In contrast, in a linked list, we have to follow

ECE264 Purdue University, 2009/04/08 5 Yung-Hsiang Lu



the links node by node. However, arrays have one major restriction: the sizes are fixed. In
contrast, a linked list can expand or shrink as needed. Can we combine the performance
of binary search without being restricted to arrays? A binary search tree is one solution.

Doubly linked list is linear meaning that all nodes are linked as a line. If each node has
two links, the links do not have to be related. It is not necessary that any node can reach
any other node using the previous or the next link. It is all right if there is only one path
to any node, from one special node called root. We usually draw a “tree” upside down.
The “root” is at the top and the “leaves” are at the bottom.

ECE264 Purdue University, 2009/04/08 6 Yung-Hsiang Lu


