
ECE 264 Advanced C Programming

2009/03/25

Contents

1 Exam 3 (April 3) ENAD 240 1

2 Recursion and Linked List 2

3 Recursion and Iteration 2

1 Exam 3 (April 3) ENAD 240

Donot come to MSEE B012 for the exam. Please notice the location change.

The third exam is held on April 3 (Friday) in ENAD 240. This is an ITaP instruction lab.
The computers run Windows XP, different from the computers in MSEE 190. You are
encouraged to visit ENAD 240 in advance and check the computers in the room.

This exam can be taken on paper or on-line. The two formats have the same questions.
Youwill receive a paper copy of the questions, regardless of the format you choose. Please
choose only one format. You do not have to inform the instructor of the format you
choose. If you decide to take the exam on paper, the format is the same as the previous
two exams. You will have 55 minutes (1:30-2:25PM).

If you decide to take the exam on-line, please enter Blackboard and you will see exam
3. You will have 58 minutes for the on-line exam. The additional 3 minutes allow you
to learn the new format. Please remember the time is electronically enforced and you
must submit your answers within the duration. You are allowed to search the Internet for
any help. However, you will not have time to learn new concepts during the exam. Your
personal laptop is allowed; please ensure that your laptop’s battery is fully charged. You
must take the on-line exam in ENAD 240. You are not allowed to take the on-line exam
anywhere else.

You are not allowed to use email, messaging, or phone to communicate with any-
body during the exam.

ECE264 Purdue University 1 Yung-Hsiang Lu

2 Recursion and Linked List

Can we also use recursion for a linked list? We will use List search as an example.

int List_search(Node * list, int v)
{
if (list == 0) { return 0; }
if ((list -> ln_value) == v) { return 1; }
return List_search(list -> ln_next, v);

}

This function checks whether a list is valid. If this list is invalid (pointing to zero), it is
definitely not possible to contain the value v. Hence, the function returns 0 to indicate
that the value is not in the list. Otherwise, we check whether the beginning of the list
contains this value. If it does, the function returns 1. If it does not, the function checks the
rest of the list by using ln next.

If the values are sorted, we can add another condition to detect whether the values in
the remaining list are larger than v. If so, it is unnecessary to check further and we can
conclude that v is not in the list.

/* values in list are sorted */
int List_search(Node * list, int v)
{
if (list == 0) { return 0; }
if ((list -> ln_value) == v) { return 1; }
if ((list -> ln_value) > v) { return 0; }
return List_search(list -> ln_next, v);

}

3 Recursion and Iteration

Recursion is often a direct implementation of divide-and-conquer using a top-down ap-
proach. Inmany cases, recursions can be converted to iterations (i.e. using for or while).
Iterations usually use a bottom-up approach by solving simpler problems first, accumu-
lating the partial solutions, and eventually solving the original problems. Factorial and
Fibonacci numbers are two simple examples.

ECE264 Purdue University 2 Yung-Hsiang Lu

Quiz and Discussion (need volunteers to share their solutions): Implement the follow-
ing functionwithout recursion.

f(n, k) =































0 if n = 0,

0 if k = 0,

1 if n = k 6= 0,

n · f(n − 1, k) if n > k > 0,
f(n,k−1)

k
otherwise,

(1)

here we use integer division. If a and b are two integer and a < b, a
b
is zero.

ECE264 Purdue University 3 Yung-Hsiang Lu

#include <stdlib.h>
#include <stdio.h>
/* do not use recursion */
int compute(int a, int b)
{
int ind1;
int ind2;
printf("(a, b) = (%d, %d)\n", a, b);
int result[a + 1][b + 1];
/* convert

if ((a == 0) || (b == 0)) { return 0; }

*/
for (ind2 = 0; ind2 <= b; ind2 ++)

{
result[0][ind2] = 0;
printf("condition 1: result[%d][%d] = %d\n",

0, ind2, result[0][ind2]);
}

printf("\n");
for (ind1 = 1; ind1 <= a; ind1 ++)

{
result[ind1][0] = 0;
printf("condition 2: result[%d][%d] = %d\n",

ind1, 0, result[ind1][0]);
}

printf("\n");
/* convert

if (a == b) { return 1; }

*/
for (ind1 = 1; (ind1 <= a) && (ind1 <= b); ind1 ++)

{
result[ind1][ind1] = 1;
printf("condition 3: result[%d][%d] = %d\n",

ind1, ind1, result[ind1][ind1]);
}

printf("\n");
/* convert

if (a > b) { return a * compute(a - 1, b); }

*/
for (ind2 = 1; ind2 <= b; ind2 ++)

{
for (ind1 = ind2; ind1 < a; ind1 ++)

ECE264 Purdue University 4 Yung-Hsiang Lu

{
result[ind1 + 1][ind2] = (ind1 + 1) * result[ind1][ind2];
printf("condition 4: result[%d][%d] = %d\n",

ind1 + 1, ind2, result[ind1 + 1][ind2]);
}

}
printf("\n");
/* convert

return compute(a, b - 1) / b;
a < b must be true

*/
for (ind1 = 1; ind1 <= a; ind1 ++)

{
for (ind2 = ind1 + 1; ind2 <= b; ind2 ++)

{
result[ind1][ind2] = result[ind1][ind2 - 1] / ind2;
printf("condition 5: result[%d][%d] = %d\n",

ind1, ind2, result[ind1][ind2]);
}

}
printf("\n");
/* print all results */
for (ind1 = 0; ind1 <= a; ind1 ++)

{
for (ind2 = 0; ind2 <= b; ind2 ++)

{
printf("result[%d][%d] = %d\n",

ind1, ind2, result[ind1][ind2]);
}

}
printf("\n");
return result[a][b];

}

int main(int argc, char * argv[])
{
int val1;
int val2;
if (argc < 3)

{
printf("need two integers\n");
return -1;

ECE264 Purdue University 5 Yung-Hsiang Lu

}
val1 = strtol(argv[1], (char **)NULL, 10);
val2 = strtol(argv[2], (char **)NULL, 10);
printf("compute(%d,%d) = %d\n", val1, val2, compute(val1, val2));
return 0;

}

ECE264 Purdue University 6 Yung-Hsiang Lu

