ECE 264 Advanced C Programming
 2009/03/04

1 Group Exercise (Integer Partition)

Partition an integer n into the sums of positive integers. For example, $n=4$ can be partitioned to $4=3+1=2+2=1+1+2$.

1. The orders are considered, $1+1+1+2=1+1+2+1$ are two different partitions. Similarly, $1+3=3+1$ are different.
2. The orders of the numbers are not considered, i.e. no permutation. Hence, $1+1+1$ $+2=1+1+2+1$ are the same and should not repeat. Similarly, $1+3=3+1$ are the same.
3. The numbers must be distinct and increasing. For example, $1+3$ is accepted but 2 +2 is not accepted. Nor is $3+1$ accepted.
4. For number n, how many ways can it be partitioned based on one of the three rules? List the answers for n between 1 and 10. Can you derive general formulas? In all cases, the number n itself is included as one partition.

Write a program that can partition any positive number n and follow one of these different rules. The output for $n=5$ and the first rule will be in this format:

```
[1, 1, 1, 1, 1]
[1, 1, 1, 2]
[1, 1, 2, 1]
[1, 1, 3]
[1, 2, 1, 1]
[1, 2, 2]
[1, 3, 1]
[1, 4]
[2, 1, 1, 1]
[2, 1, 2]
[2, 2, 1]
[2, 3]
[3, 1, 1]
[3, 2]
[4, 1]
[5]
```

The class is divided into eight groups. Each group has an initial leader (marked with "L"). The initial leader is responsible calling a meeting for electing a new leader. The new leader can the initial leader. On March 25 (Wednesday), four groups will be selected to present their solutions for solving one of the four problems. The first three solutions are shown in C code and the last is shown in mathematical derivation. If your group volunteers, everyone in the group receives 1.0 bonus point as part of class participation. The group leader and the presenter (if they are different) receive 1.5 bonus points. If your group wants to volunteer, please post in Blackboard - Discussion - Lecture and specify which problem your group will present and the name of the presenter.

If fewer than four groups volunteer, the instructor will select more groups; everyone in these groups receives 0.5 bonus point. Since the chance of being selected is high (4 / 8), it is advised that your group volunteers for receiving the additional 0.5 bonus point.

This group exercise is voluntary. If a person does not to participate, the group leader will report to the instructor and this person does not receive the bonus point. There is no penalty if a person does not participate.

Group Discussion (03/25)

1L Ahuja Karan	
1 Fetter Daniel	5L Phillips Collin
1 Geng Junzhe	5 Chunduru Nag Varun
1 Hudepohl Daniel	5 Grover Animesh
1 Kim Wesley	5 Izturriaga Manuel
1 Pulliam Stuart	5 Ko Seongwoon
1 Shutt Benjamin	5 Liu Sirui
1 Swindler Joshua	5 Schieler Curt
	5 Hall Loren
2L Pesyna Kenneth	
2 Brener Gregory	6 Malik Abish
2 Christman Jacob	6 Bajaj Arjun
2 Kim Do Hyung	6 Faber Darrell
2 Smith Sean	6 Jhajaria Krishna
2 Whyland Jon	6 Robles Derrick
2 Yuki Zeno	6 Schmidt Susanne
	6 Wolfer Michael
$3 L$ Kim Do-Hyoung	7 Oliver Ian
3 Al Shehhi Hamad	7 Bansal Nikhil
3 Zhou Yang	7 Conaboy Michael
3 Herdzina-Huss Darien	7 Jain Rajat
3 Mall Rishabh	7 Neuenschwander Tyler
3 Mehta H'rsh	7 Park Junhyeong
3 Mohammed Razip Ahmad Mujahid	7 Vadlamudi Ramanth
3 Wetherill Julia	
4L Li Hetong	$8 L$ Chen Yi-Kai
4 Al Aryani Khaled	8 Dinkledine Aaron
4 Granger William	8 Jesse Skylar
4 Guo Yicheng	8 Mahmood Zaeem
4 Hall Ethan	8 Mc Lean Ryan
4 Lakhmani Vashisht	8 Mishra Ankur
4 Penmetsa Prithvi	8 Schuman Richard
4 Raj Vishwaman	

