
ECE 264 Advanced C Programming

2009/02/20

Contents

1 Search and Delete in Linked List 1

1 Search and Delete in Linked List

The linked list is interesting but not particularly useful if we can only insert, not search
nor delete. The next example shows how to search and delete. Each returns 1 if the value
is found in the current list, and 0 if the value is not in the current list.

#ifndef LISTNODE2_H
#define LISTNODE2_H
#include "listnode.h"
int List_search(Node * list, int v, Node * * n);
int List_delete(Node * * list, int v);
#endif

Notice that we extend the previous header file by declaring two additional functions in
another header file (called listnode2.h). C allows us to add more functions without
changing the existing header files. This is very convenient because we do not have to
rewrite or copy existing header files. This new header file includes the previous one so
that the structure is known in the new header file.

#include "listnode.h"
#include "listnode2.h"
#include <stdio.h>
#include <stdlib.h>
int List_search(Node * list, int v, Node * * n)
{

/* is v inside the list? If not, return 0. */
/* If so, return 1 and n points to the node. */
/* Node n points to part of list, not a separate list.

Therefore,
we should not intend to delete the list starting at n */

Node * curr = list;

ECE264 Purdue University 1 Yung-Hsiang Lu

(* n) = 0;
while ((curr != 0) && ((curr -> ln_value != v)))

/* must check curr first */
{
curr = curr -> ln_next;

}
if (curr == 0) /* cannot find it */

{
return 0;

}
(* n) = curr;
return 1;

}

int List_delete(Node * * list, int v)
{

/* return 1 if found and delete */
/* return 0 if not found */
Node * curr = (* list);
Node * prev = (* list);
while ((curr != 0) && ((curr -> ln_value != v)))

{
prev = curr;
curr = curr -> ln_next;

}
if (curr == 0) /* not found */
{
return 0;

}
if (curr == (* list)) /* first node */
{
(* list) = (* list) -> ln_next;

}
else

{
prev -> ln_next = curr -> ln_next;

}
Node_destruct(curr);
return 1;

}

List search takes three arguments: the first is the pointer of the list to be searched, the
second is the value to be searched, and the third is the pointer of the node if the value is

ECE264 Purdue University 2 Yung-Hsiang Lu

found. If the value is not in the list, the third argument is assigned to zero. The function
uses another pointer called curr to represent the current location at the list. If the pointer
is not zero, we check whether the value is the same as the second input argument. If
they are different, move to the next node. The while block terminates in one of the two
conditions: curr is zero or the value is found. In the former case, the value is not found
and the function returns zero. In the latter case, we assign * n to the location of the
current node and return 1. This while block is another example of using “short-circuit
evaluation” in C. We must check whether curr is zero first. If it is zero, the second
condition is not checked. We cannot exchange the order of the two conditions. Doing so
will cause the program to crash when the searched value is not in the list.

A linked list is called a dynamic structure because its size grows and shrinks as needed
when the program is running. List delete is a little more complicated because we
have to remember the node to be deleted and the node that is pointing to the deleted
node. A figure on page 459 of ABoC illustrates the procedure of deletion. This function
maintains two pointers, one called curr and the other called prev. The former checks
whether a node has the value we want to delete. If it does not, we store the current node
in prev and proceed to the next node. The while block terminates because either we
reach the end of the list, or we have found the value. If we reach the end, the value is not
found and the function returns zero. Otherwise, we check whether the node to be deleted
is the very first one. If so, move the pointer to its next. If it is not the first one, link the
previous node’s next to the current node’s next. Remember to release the memory held
by the current node. Since the location pointed by listmay change, we have to pass the
address of list to ensure that it is correctly updated.

The main function tests List search and List delete. Two things to notice
here: (1) list2 points to part of list1 if a value is found. Therefore, we call
List destruct(list1) and do not call List destruct(list2). Doing so would
delete the same list twice. (2) We should test searching and deleting the first and the last
values in the list. This is often necessary because we treat them differently from the rest
of the nodes. In Exercise 7, you will be asked to use test coverage to see whether your
program tests every condition.

#include "listnode.h"
#include "listnode2.h"
#include <stdio.h>
void testFunc3()
{

Node * list1 = 0;
Node * list2 = 0;
int cnt;
for (cnt = 0; cnt < 10; cnt ++)

{
list1 = List_insert(list1, cnt + 10);

ECE264 Purdue University 3 Yung-Hsiang Lu

}
List_print(list1);
printf("search %d = %d\n", 6, List_search(list1, 6, & list2));
List_print(list2);
printf("search %d = %d\n", 16, List_search(list1, 16, & list2));
List_print(list2);
printf("search %d = %d\n", 19, List_search(list1, 19, & list2));
List_print(list2);
printf("search %d = %d\n", 10, List_search(list1, 10, & list2));
List_print(list2);

printf("delete %d = %d\n", 3, List_delete(& list1, 3));
List_print(list1);
printf("delete %d = %d\n", 13, List_delete(& list1, 13));
List_print(list1);

printf("delete %d = %d\n", 10, List_delete(& list1, 10));
List_print(list1);

printf("delete %d = %d\n", 19, List_delete(& list1, 19));
List_print(list1);

List_destruct(list1);
/* do not List_destruct(list2) because it points to one node

in list1 */
}

int main(int argc, char * argv[])
{

testFunc3();
return 0;

}

/*
19 18 17 16 15 14 13 12 11 10

search 6 = 0

search 16 = 1
16 15 14 13 12 11 10

ECE264 Purdue University 4 Yung-Hsiang Lu

search 19 = 1
19 18 17 16 15 14 13 12 11 10

search 10 = 1
10

delete 3 = 0
19 18 17 16 15 14 13 12 11 10

delete 13 = 1
19 18 17 16 15 14 12 11 10

delete 10 = 1
19 18 17 16 15 14 12 11

delete 19 = 1
18 17 16 15 14 12 11

*/

Makefile
If you do not understand Makefile, review Exercise 3.
This is a comment (after #).
OBJS = listnode.o listnode2.o list2main.o
SRCS = listnode.c listnode2.c list2main.c
CFLAGS = -g -Wall
GCC = gcc $(CFLAGS)
TARGET = list2main
list2main: $(OBJS)

$(GCC) $(OBJS) -o $(TARGET) # create executable
./$(TARGET) # execute the program
valgrind --leak-check=yes ./$(TARGET) # memory leak?

.c.o:
$(GCC) -c $*.c

clean:
rm -f $(OBJS) $(TARGET)

depend:
makedepend $(SRCS)

ECE264 Purdue University 5 Yung-Hsiang Lu

