ECE 264 Advanced C Programming

2009/02/18

Contents
1 Pointer (Review)
2 C Programs using Multiple Files

3 Linked List

1 Pointer (Review)

Explain the meanings of the following statements:

int a[100];
int = b;
b = a;
int = c;
c = malloc(100 = sizeof(int));
b = c;
void fl(int * v)
{
* Vv = 3
}
int d=-9;
f1(& d);
void f2(int » x p)
{
* p = malloc(200 » sizeof(int));
}

ECE264 Purdue University 1

Yung-Hsiang Lu

nt * g,

f2(& g);

Person * h;

h

= mal |l oc(60 * sizeof (Person));

Rules:

a[100] allocates 100 elements and its address cannot be changed.

i nt b allocates a pointer and it is not pointing to any meaningful location (yet).
b = aisvalid; b points to the starting address of the array a.

* b is the value of the first element of the array.

b++; moves b to point to the next element.

a = bisinvalid;

¢ = malloc ... makes ¢ point to a newly allocated memory. The memory
should be released later by calling f r ee.

b can point to other locations, suchasb = c.
If b and ¢ point to the same location, the memory can be released only once.

C function calls use pass by value. The value is copied from the caller to the functions’
arguments.

If you want to change the value of an argument and make the change visible at
the caller, you have to pass the address from the caller and uses a pointer at the
function.

2 C Programs using Multiple Files

If a program uses multiple files, these files are usually structured in the following way:

Pairs of . h (header) and . ¢ (source) files. Header files declare types and functions.
Source files define (i.e. implement) the functions.

Source files use #i ncl ude to include header files.

ECE264 Purdue University 2 Yung-Hsiang Lu

e A source file includes a header file if the source file needs information (type or func-
tion declaration) from the header file.

e A file called nmi n. ¢ has the main function.

o Makef i | e is used to compile the source files and link the object files.

3 Linked List

So far we have handled data whose sizes are known (1) when the program is written or (2)
when the program starts executing. For the latter, we may use mal | oc for arrays whose
sizes are not known when the programs are written. However, for these cases, their sizes
are known before we use the array elements.

int a; /= scal ar */

doubl e b; [+ scal ar */

int c[100]; [+ array of 100 integers x/

Person p; /* one object of programrer-defined type */
Person p2[4]; [+ array of four Person objects =/

int = ptr; /* pointer to integer =/

ptr = malloc(n * sizeof (int));

What happens if we cannot know the size before we use the elements? When do we
need such capability? A text editor is an example. The editor does not know how many
letters the user may enter. If the editor allocates a fixed size, the editor cannot handle
a document that is longer than the size. You cannot write a text editor that allows only
so many letters; otherwise, users will become angry when they cannot add more letters.
You could make the size very large so no user would ever exceed the size. However,
this is inefficient. A better solution is to allocate more memory as needed. If the user
add more pages, the editor allocates more memory. If the user deletes some pages, the
editor releases the unused memory. This lecture explains linked list to handle data whose
sizes are not known even when we start using and processing the initial parts of the data.
As more data are added, more memory is allocated to store the data. For simplicity, we
consider only integers as the data right now.

A linked list is composed of a group of list nodes. Each node is a structure and contains
two attributes: one for the data, and one to connect (i.e. link to) the next node using a
“self-referential” attribute.

ECE264 Purdue University 3 Yung-Hsiang Lu

[+ |istnode. h */

#i f ndef LI STNODE_H

#defi ne LI STNODE H

typedef struct |istnode

{
struct listnode * | n_next;
int I n_val ue;

} Node;

Node * Node_construct(int v);

Node * List_copy(Node * n);

voi d List_assign(Node * * nl, Node * n2);
voi d Node destruct(Node * n);

voi d List_destruct(Node * n);

Node * List_insert(Node * n, int v);

i nt Node_get Val ue(Node * n);

voi d Node_print(Node * n);

voi d List_print(Node * n);

#endi f

When we declare an attribute in a structure, a C compiler has to know the size of the
attribute in order to allocate sufficient space. However, | n_next is part of | i st node
and we have not finished | i st node yet. How can the compiler know how much space
for the attribute? The trick is declaring it as a pointer. When an attribute is a pointer,
its size is independent of the type pointed to. The size of a pointer is the same for char,
i nt,doubl e, or Per son. The size of the pointer is the size of the addressing space of the
computer, usually 32 or 64 bits. This “next” pointer is the link to connect | i st node. The
structure has another attribute to store an integer value. the rest of the header file declares
the functions used to handle the linked list. Some functions are related to individual
nodes and the others are related to the whole list. Before we explain how to link the
nodes by code, let’s see a visual representation of a linked list, on page 448 in ABoC.

When a node is created, its “next” points to zero, or NULL. This means the node is cur-
rently not linking to anything. In C, zero is an invalid value for an address. If a node links
to another node, the former | n_next stores the address of the latter. This linked list is
one directional, meaning that a node links to the next node but the next has no link to the
previous node. In a doubly linked list, each node has two links, one to the next and one to
the previous.

How do we implement the functions to handle a node or a list? The first function creates
a node that stores an integer and the node does not link to anything.

[+ |listnode.c */
#i nclude "Ili stnode. h"

ECE264 Purdue University 4 Yung-Hsiang Lu

#i ncl ude <stdi o. h>
#incl ude <stdlib. h>
Node * Node_construct(int v)

{
Node * n = mal |l oc(si zeof (Node));
n ->1n_value = v;
n ->In_next = 0;
return n;
}

Node * List_insert(Node * n, int v)
{
/* insert at the beginning =/
Node * p = Node_construct(v);
p ->In_next = n;
return p;

}

Node * List_copy(Node * n2)
{
Node * next = n2;
Node * n;
if (n2 ==0) { return O; }
n = Node_construct(n2 -> | n_val ue);
next = next -> | n_next;
while (next !'= 0)
{
n = List_insert(n, next -> |n_value);
next = next -> | n_next;
}

return n;

}

voi d List_assign(Node * * nl, Node * n2)
{
if ((* nl) == n2)
{ return; }
Li st_destruct(* nl);
* nl = List_copy(n2);
}

voi d Node destruct (Node * n)

ECE264 Purdue University 5

Yung-Hsiang Lu

{

free (n);

}

voi d List_destruct(Node * n)
{
Node * prev = n
Node * next;
while (prev !'= 0)
{
next = prev -> | n_next;
Node destruct (prev);
prev = next;
}
}

i nt Node_get Val ue(Node * n)
{

return (n -> I n_val ue);

}

voi d Node_print(Node * n)
{
printf("%l ", n -> 1n_value);

}

voi d List_print(Node * n)
{
Node * curr = n
while (curr !'= 0)
{
Node print(curr);
curr = curr -> | n_next;
}
printf("\n\n");
}

The next function inserts a new value to the list that starts at Node n. This function creates
a new node whose value is v. After this new node is created, the node’s | n_next points
to zero, i.e. no other node. The next statement makes the input node the next of the newly
created node. The function then returns the newly created node. Before explaining any
of the other functions, let’s see how to use the insert function.

ECE264 Purdue University 6 Yung-Hsiang Lu

[+ listmain.c */
#incl ude "li st node. h"
#i ncl ude <stdi o. h>
voi d test Funcl()

{
Node * list = 0; /* always initialize */
int inlnt = 0;
do
{
printf("Enter a nunber, 0 to stop ");
scanf ("%l", & inlnt);
if (inlnt '= 0)
{
l[ist = List_insert(list, inlnt);
}
} while (inlnt !'= 0);
List_print(list);
Li st _destruct(list);
}
| *
out put
Enter a nunber, 0 to stop 6
Enter a nunber, 0 to stop 7
Enter a nunber, 0 to stop 8
Enter a nunber, 0 to stop 9
Enter a nunber, 0 to stop O
9876
*/
voi d test Func2()
{
Node * listl = O;
Node * list2 = 0;
Node * |list3 = O;
int cnt;
for (cnt = 0; cnt < 10; cnt ++)
{
listl = List _insert(listl, cnt + 10);
list2 = List_insert(list2, cnt + 100);
}
List_print(listl);
List_print(list2);
ECE264 Purdue University 7

Yung-Hsiang Lu

list3 = List_copy(listl);
List_assign(& list2, list2); /* destination = source */
List_assign(& listl, list2);
l[istl = List_insert(listl, -91);
list3 = List_insert(list3, 1003);
List _print(listl);

List _print(list2);
List_print(list3);

Li st_destruct(listl);

Li st_destruct(list2);

Li st _destruct(list3);

}
| *
out put
19 18 17 16 15 14 13 12 11 10
109 108 107 106 105 104 103 102 101 100
-91 100 101 102 103 104 105 106 107 108 109
109 108 107 106 105 104 103 102 101 100
1003 10 11 12 13 14 15 16 17 18 19
* |
int main(int argc, char * argv[])
{
test Funcl();
test Func2();
return O;
}
Makefile
[istmain: listnode.h listnode.c |istmain.c
gcc -g -Wall -c listnode.c
gcc -g -wWall -c listmain.c
gcc -g -Vall listnode.o listmain.o -o listmain
listmain
val grind --I|eak-check=yes ./listmain
cl ean:

rm-f .o listnain

In this example t est Funcl, we first create a node but it points to nothing. It is a good
habit to initialize all pointers to zero. C does not guarantee that a pointer points to
zero. Instead, the pointer may store a random number as the address. You cannot check
whether the address is zero for determining the pointer contains a valid address. If you
do not immediately assign zero to a pointer, you will probably forget later.

ECE264 Purdue University 8 Yung-Hsiang Lu

The program asks a user to enter a number. If the number is not zero, it is inserted into
the list and the program asks the user to enter another number. We call Li st _i nsert
by giving the current list as the first argument and also store the returned pointer at the
same list. After the user enters zero, this whi | e block ends, the list is printed and then
destroyed. You may notice that the output is the reverse order as the input. The value
6 is entered first but it is printed last. This occurs because the way we write the insert
function. The function takes the new value and puts it at the beginning of the list. The
original list is connected through the next attribute. This is called “First-In-Last-Out”
(FILO) or “Last-In-First-Out” (LIFO). It is different from what we often see “First-In-First-
Out” (FIFO). LIFO/FILO is also called stack and it is a very important part of all computer
programs. We will discuss that in a later lecture. Since we care about storing data and do
not care about the order right now, this reverse order is all right. Later we will consider
how to handle the orders, for example, FIFO, or sort the numbers as they are added.
Li st _pri nt goes through the list node-by-node. If we have not reached the end of the
list (pointing to zero), print the value and go to the next node.

The next test considers the copy and the assign functions. We create two lists first, with
values of 0 to 9 and 100 to 109. The function Li st _copy is used to create | i st 3. After
calling this function, | i st 1 and | i St 3 are two separate and independent lists. We can
modify one without affecting the other. Remember to call “copy” for creating the list for
the first time. If a list already exists, we need to call the “assign” function. The names are
borrowed from C++, corresponding to “copy constructor” and “assignment operator”
respectively. We can insert -91 to | i st 1 and 1003 to | i st 3. How do the two functions
work? Li st _assi gn checks whether the two lists are the same. If they are the same,
the function returns without doing anything. This prevents destroying a list when the
destination and the source are the same. If they are different, destroy the destination to
release the memory currently held by the list. The next step copies the list. How does copy
work? It is somewhat similar to the print function. To copy the nodes, we go through the
nodes one by one.

ECE264 Purdue University 9 Yung-Hsiang Lu

