
ECE 264 Advanced C Programming

2009/02/11

Contents

1 How to Improve Your Exam Scores 1

2 Structure 2

3 Objects and Operations 4

4 Structure with Memory Allocation 6

1 How to Improve Your Exam Scores

These suggestions may help you improve your exam scores.

• Make your answers easy to find. If an answer cannot be easily found, it is not graded.
If you write down intermediate results, make sure you also write the final answer
and mark it clearly.

• Write an answer only once. If you write two different answers for the same question,
which one should be used for grading?

• Do not waste time. It is unnecessary to write the same answer twice in two different
places. If an answer is easy to find, one is sufficient. For a multiple-choice ques-
tion, you need to choose the correct answer but it is unnecessary to copy the full
description of each choice.

• Read each question carefully. Many questions require multiple parts. If you answer
only some parts and neglect the others, you cannot receive the full score.

• Improve your handwriting. If your writing cannot be recognized, your answer cannot
be graded.

ECE264 Purdue University 1 Yung-Hsiang Lu

• Write each answer carefully. Do not assume that you can finish the whole exam
quickly and check the answers again. In most cases, you won’t have time to check
and the careless mistakes stay in the answers.

• Get enough sleep before an exam. If you cannot keep your eyes open, you cannot an-
swer any question.

• Write down what you know. You may get some points even though you do not know
the final answer. However, do not waste time writing anything that is obviously
wrong.

2 Structure

So far we have learned two types of data: scalar and array. A scalar means a single piece
of data, such as an integer (int), a double-precision floating-point number (double), or
a character (char). An array means a collection of data of the same type, such as an array
of integers (int array[10]) or characters (char str[20];). In many cases, however,
we want to mix data types and create a new data type. For example, a Person has a
name (char []) and an age (int). A group of people will be an array of Person. If
we create two arrays— one of char * and the other of int— there is no obvious way to
connect a name with this Person’s age. You can read the fifth’s name from the first array
and the second age from the second array. This causes confusion and leads to mistakes.
What we need is a way to create our own data type for Person.

const int maxNameLength = 60;
struct Person
{
int p_age;
char p_name[maxNameLength];

};

We have created a structure using C’s struct. Each person has an age and a name.
We assume that a Person’s name cannot exceed 59 characters (the last one is for the
ending character ’\0’). These two are called the attributes of Person. How do we use the
structure? Here are two examples

struct Person p1;
struct Person p2;

We have created two Person variables: p1 and p2. To change an attribute, we can write

ECE264 Purdue University 2 Yung-Hsiang Lu

p1.p_age = 20;
strcpy(p2.p_name, "Amy Johnson");

Next is another example for a Date structure.

struct Date
{
int d_date;
int d_month;
int d_year;
char d_dayName[4]; /* Mon, Tue, Wed, ... */
char d_monthName[4]; /* Jan, Feb, Mar, ... */

};

To create a Date variable, we can write

struct Date today;

You may notice the coding style I am using. The name of a structure is a noun and starts
an uppercase letter. We are borrowing the convention adopted in object-oriented pro-
gramming (OOP), where classes’ names are usually nouns and starts with capital letters.
I also invent my own coding convention by adding a prefix with an underscore before
each attribute. The purpose is to make it easier to recognize what each identifier means.
When we see p age, we know that it is probably an attribute of a structure whose name
starts with P. When we see d year, we know that it is probably an attribute of a structure
whose name starts with D. These conventions make the program easier to read. You can
develop your own coding styles, as long as they are reasonable and consistent. You can
also find the GNU Coding Standards .

Instead of typing struct every time, we can add typedef before struct:

const int maxNameLength = 60;
typedef struct /* typedef before struct */
{
int p_age;
char p_name[maxNameLength];

} Person;
Person p1;
Person p2;

I am going to borrow some terms and concepts from object-oriented programming. OOP
can help us organize our programs in a more consistent way.

ECE264 Purdue University 3 Yung-Hsiang Lu

3 Objects and Operations

In these two examples, Person and Date are types; p1, p2, and today are variables. We
also call them objects even though they are not strictly objects for C++ or Java. They have
three properties as an “object”: (1) identity (p1 and p2), (2) states (names and ages), and
(3) operations. (introduced later). Next example shows operations.

/* written in the style of object-oriented programming */
/* It is different from the example in 9.2 ABoC */
#include <stdio.h>
typedef struct
{
double c_x;
double c_y;

} Vector;

Vector Vector_construct(double x, double y)
{
Vector c;
c.c_x = x;
c.c_y = y;
return c;

}

Vector Vector_add(Vector c1, Vector c2)
{
Vector c3;
c3.c_x = c1.c_x + c2.c_x;
c3.c_y = c1.c_y + c2.c_y;
return c3;

}

Vector Vector_subtract(Vector c1, Vector c2)
{
Vector c3;
c3.c_x = c1.c_x - c2.c_x;
c3.c_y = c1.c_y - c2.c_y;
return c3;

}

void Vector_print(Vector c)
{
printf("x = %f, y = %f\n", c.c_x, c.c_y);

ECE264 Purdue University 4 Yung-Hsiang Lu

}

int main(int argc, char * argv[])
{
Vector c1 = Vector_construct(1.9, 2.4);
Vector c2 = Vector_construct(3.4, 5.7);
Vector c3 = Vector_add(c1, c2);
Vector c4 = Vector_subtract(c1, c2);
Vector_print(c1);
Vector_print(c2);
Vector_print(c3);
Vector_print(c4);
return 0;

}

/*
output
x = 1.900000, y = 2.400000
x = 3.400000, y = 5.700000
x = 5.300000, y = 8.100000
x = -1.500000, y = -3.300000

*/

In this example, we create a structure for 2-dimensional Vectors and four operations.
You may find that each operation starts with the prefix Vector so that we know the
operations are for the Vector structure. This is another example making the program
easier to understand. You may also notice that each operation is a verb.

The first function Vector construct creates an object of Vector by taking two argu-
ments, for the x and the y coordinates. The next two functions add and subtract Vector
objects and return the results. Finally, the last function prints the coordinates.

The next example creates an array of structures. Each element is treated as a Vector
object.

int main(int argc, char * argv[])
{
Vector ca[4];
ca[0] = Vector_construct(1.9, 2.4);
ca[1] = Vector_construct(3.4, 5.7);
ca[2] = Vector_add(ca[0], ca[1]);
ca[3] = Vector_subtract(ca[0], ca[1]);
Vector_print(ca[0]);
Vector_print(ca[1]);

ECE264 Purdue University 5 Yung-Hsiang Lu

Vector_print(ca[2]);
Vector_print(ca[3]);
return 0;

}

4 Structure with Memory Allocation

In Vector, the attributes are scalars: double-precision floating point numbers. What hap-
pens if an attribute needs to allocate memory? The next example shows how to do that.
As our program becomes more and more complicated, we should organize it into mul-
tiple files. This program has three files. In addition, we create Makefile (exercise 3) so
that we do not have to compile and link the files by typing all commands every time. We
just need to type make.

#ifndef PERSON_H
#define PERSON_H
typedef struct
{
int p_age;
char * p_name;

} Person;

Person Person_construct(int a, char * n);
void Person_destruct(Person p);
int Person_getAge(Person p);
char * Person_getName(Person p);
void Person_print(Person p);
#endif

A header file (extension .h) has the following structure

#ifndef FILENAME_H
#define FILENAME_H
...
#endif

Right now, our program is not complex enough to explain the necessity of this structure.
For the time being, just remember the format. If you use Eclipse, it automatically adds
#ifndef ... #endif to header files.

ECE264 Purdue University 6 Yung-Hsiang Lu

A header file provides type and function declarations. In this example, we declare a struc-
ture called Person and several functions related to the structure.

The next file is a source file and implements the functions declared in the header file. A
typical C program has several header files (.h) and corresponding source files (.c).

#include "person.h"
/* system header file, use < > */
/* additional header file, use " " */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
Person Person_construct(int a, char * n)
{
Person p;
p.p_age = a;
p.p_name = malloc((strlen(n) + 1) * sizeof(char));
strcpy(p.p_name, n);
return p;

}

void Person_destruct(Person p)
{
free (p.p_name);

}

int Person_getAge(Person p)
{
return p.p_age;

}

char * Person_getName(Person p)
{
return p.p_name;

}

void Person_print(Person p)
{
printf("age= %d, name= %s\n", p.p_age, p.p_name);

}

The constructor allocates memory for the name. Please remember that strlen does
not include the ending character ’\0’ and we have to allocate one additional character.

ECE264 Purdue University 7 Yung-Hsiang Lu

When we allocate memory in the constructor, we should also create a destructor (called
destruct) to release the memory. Otherwise, the program will leak memory. We also
have two functions to retrieve the age and the name of a Person object.

In addition to pairs of .h and .c files, a file contains the main function. The main func-
tion creates two Person objects, p1 and p2. We can compare their ages to determine who
is younger.

#include <stdio.h>
#include "person.h"
int main(int argc, char * argv[])
{
Person p1 = Person_construct(19, "Tom Johnson");
Person p2 = Person_construct(21, "Mary Smith");
Person_print(p1);
Person_print(p2);
if (Person_getAge(p1) > Person_getAge(p2))

{
printf("%s is older than %s\n", Person_getName(p1),

Person_getName(p2));
}

else
{

if (Person_getAge(p1) < Person_getAge(p2))
{
printf("%s is younger than %s\n", Person_getName(p1),

Person_getName(p2));
}

else
{
printf("%s and %s have the same age\n", Person_getName(p1),

Person_getName(p2));
}

}
Person_destruct(p1);
Person_destruct(p2);
return 0;

}

/*
output:
age= 19, name= Tom Johnson
age= 21, name= Mary Smith
Tom Johnson is younger than Mary Smith

ECE264 Purdue University 8 Yung-Hsiang Lu

*/

Since we have several files now, compiling and linking them requires running gcc several
times. We use Makefile for this purpose.

person: person.h person.c main.c
gcc -Wall -c person.c
gcc -Wall -c main.c
gcc -Wall person.o main.o -o person

clean:
rm -f *.o person

This program actually has a serious problem, as shown in the next example.

#include <stdio.h>
#include <string.h>
#include "person.h"
int main(int argc, char * argv[])
{
Person p1 = Person_construct(19, "Tom Johnson");
Person p2 = Person_construct(21, "Mary Smith");
Person_print(p1);
Person_print(p2);
p1 = p2; /* assign p2 to p1, they should be the same */
Person_print(p1);
Person_print(p2);
strcpy(p1.p_name, "Edward"); /* modify p1’s name */
Person_print(p2); /* p2’s name is also changed to Edward */
Person_destruct(p1);
Person_destruct(p2);
return 0;

}

/*
output:
age= 19, name= Tom Johnson
age= 21, name= Mary Smith
age= 21, name= Mary Smith
age= 21, name= Mary Smith
age= 21, name= Edward

*** glibc detected *** double free or corruption (fasttop): 0x0804a018 ***
======= Backtrace: =========
/lib/tls/i686/cmov/libc.so.6[0x4009ca85]
/lib/tls/i686/cmov/libc.so.6(cfree+0x90)[0x400a04f0]

ECE264 Purdue University 9 Yung-Hsiang Lu

./person4[0x80484eb]

./person4[0x8048612]

*/

The first four lines have nothing special. We create two Person objects and print them.
The outputs are expected. Next, we assign p2 to p1. We print these two objects again.
Both of them show “Mary Smith.” The next line changes p1’s name to Edward. Since
“Edward” is shorter than “Mary Smith”, there is enough space for the new name. The
next line prints p2 and it shows “Edward”.

We changed p1’s name and also p2’s name. Let’s consider the following code for com-
parison.

int x = 1;
int y = 5;
x = y; /* x is 5 now */
x = 18; /* x is 18, what is y? */

What is the value of y? It should be 5, right? We would be surprised if ywere 18.

Remember that the name is stored as an array of characters and an array is a pointer.
When we use

p1 = p2;

C does shallow copy by assigning the address, not the value, of p2’s name to p1’s name. As
a result, p1’s name and p2’s name share the same address (p2’s address). Whenwemod-
ify p1’s name, we alsomodify p2’s name. Thememory allocated to p1’s name is no longer
accessible; this is an example of memory leak. This also explains why Person destruct
causes problems. When we try to release the memory allocated to p2’s name, it has al-
ready been released earlier, by Person destruct(p1).

We will solve this problem in the next lecture using a concept called deep copy.

ECE264 Purdue University 10 Yung-Hsiang Lu

